Skip to main content
Log in

Fisher Difference Discriminant Analysis: Determining the Effective Discriminant Subspace Dimensions for Face Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In most manifold learning based subspace discriminant analysis algorithms, how to construct the local neighborhood graphs and determine the effective discriminant subspace dimensions in applications are difficult but important problems. In this paper, we propose a novel supervised subspace learning method called Fisher Difference Discriminant Analysis (FDDA) for linear dimensionality reduction. FDDA introduces the local soft scatter to characterize the distributions of the data set. By combining Fisher criterion and difference criterion together, FDDA obtains the optimal discriminant subspace, on which a large margin between different classes is provided for classification. Eigenvalue analysis shows that the effective discriminant subspace dimensions of FDDA can be automatically determined by the number of positive eigenvalues and are robust to noise and invariant to rotations, rescalings and translations of the data. Comprehensive comparison and extensive experiments show that FDDA is superior to some state-of-the-art techniques in face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1): 4–37

    Article  Google Scholar 

  2. Joliffe I (1986) Principal component analysis. Springer, New York

    Google Scholar 

  3. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press Professional, San Diego

    MATH  Google Scholar 

  4. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2): 228–233

    Article  Google Scholar 

  5. Belhumeur PN, Hespanha JP, Kriengman DJ (1997) Eigenfaces versus Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7): 711–720

    Article  Google Scholar 

  6. Schölkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5): 1299–1319

    Article  Google Scholar 

  7. Yang JZJ, Frangi AF, Zhang D, Yang J-y (2005) KPCA Plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2): 230–244

    Article  Google Scholar 

  8. Tenenbaum JB (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(22): 2319–2323

    Article  Google Scholar 

  9. Roeeis S, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(22): 2323–2326

    Article  Google Scholar 

  10. Zhang HZZ (2004) Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM J Sci Comput 26(1): 313–338

    Article  MathSciNet  MATH  Google Scholar 

  11. Belkin M, Niyogi P (2001) Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Proceedings of Advances in Neural Information Processing System, no. 14, pp 589-591

  12. Bengio Y, Paiement JF, Vincent P, Delalleau O, Roux N, Ouimet M (2004) Out-of-sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering. Advances in Neural Information Processing Systems

  13. He X, Yan S, Hu Y, Niyogi P, Zhang H-J (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3): 328–340

    Article  Google Scholar 

  14. Xu Y, Song F, Feng G, Zhao Y (2010) A novel local preserving projection scheme for use with face recognition. Expert Syst Appl 37(9): 6718–6721

    Article  Google Scholar 

  15. Xu Y, Zhong A, Yang J, Zhang D (2010) LPP solution schemes for use with face recognition. Pattern Recog 43(12): 4156–4176

    Article  Google Scholar 

  16. Chen H-T, Chang H-W, Liu T-L (2005) Local discriminant embedding and its variants. Proc IEEE Conf Comput Vision Pattern Recog 2: 846–853

    Google Scholar 

  17. Fu Y, Yan S, Huang TS (2008) Classification and feature extraction by simplexization. IEEE Trans Inf Forensics Secur 3(1): 91–100

    Article  Google Scholar 

  18. Fu Y, Yan S, Huang TS (2008) Correlation metric for generalized feature extraction. IEEE Trans Pattern Anal Mach Intell 30(12): 2229–2235

    Article  Google Scholar 

  19. Li Z, Lin D, Tang X (2009) Nonparametric discriminant analysis for face recognition. IEEE Trans Pattern Anal Mach Intell 31(4): 755–761

    Article  Google Scholar 

  20. Yan S, Xu D, Zhang B, Zhang H-J, Yang Q, Lin S (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1): 40–51

    Article  Google Scholar 

  21. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neura Netw 17(1): 157–165

    Article  Google Scholar 

  22. Wang F, Wang X, Zhang D, Zhang C (2009) Marginface: a novel face recognition method by average neighborhood margin maximization. Pattern Recog 42(1): 2863–2875

    Article  MATH  Google Scholar 

  23. Bian W, Tao D (2011) Max-min distance analysis by using sequential SDP relaxation for dimension reduction. IEEE Trans Pattern Anal Mach Intell 33(5): 1037–1050

    Article  Google Scholar 

  24. Song D, Tao D (2010) Biologically inspired feature manifold for scene classification. IEEE Trans Image Process 19(1): 174–184

    Article  MathSciNet  Google Scholar 

  25. Song D, Tao D (2009) Discriminative geometry preserving projections. In: in Proceedings of the International Conference on Image Processing, pp 2457–2460

  26. Zhang T, Tao D, Li X, Yang J (2009) Patch alignment for dimensionality reduction. IEEE Trans Knowl Data Eng 21(9): 1229–1313

    Google Scholar 

  27. Zhang T, Yang J, Wang H, Du C (2006) Maximum variance projection for face recognition. Pattern Recog 39(1): 1053–1065

    Google Scholar 

  28. Chang H, Yeung D (2006) Robust locally linear embedding. Pattern Recog 39(6): 1053–1065

    Article  MATH  Google Scholar 

  29. Li B, Huang D, Wang C, Liu K (2008) Feature extraction using constrained maximum variance mapping. Pattern Recog 41(11): 3287–3294

    Article  MATH  Google Scholar 

  30. Wan Minghua, Lai Z, Jin Z (2011) Locally minimizing embedding and globally maximizing variance: unsupervised linear difference projection for dimensionality reduction. Neural Process Lett 33(3): 267–282

    Article  Google Scholar 

  31. Lai Z, Wan M, Jin Z, Yang J (2011) Sparse two-dimensional local discriminant projections for feature extraction. Neurocomputing 74(4): 629–637

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, Z., Zhao, C. & Wan, M. Fisher Difference Discriminant Analysis: Determining the Effective Discriminant Subspace Dimensions for Face Recognition. Neural Process Lett 35, 203–220 (2012). https://doi.org/10.1007/s11063-012-9212-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9212-6

Keywords

Navigation