Skip to main content
Log in

Kernel Local Sparse Representation Based Classifier

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Sparse representation-based classification (SRC) and its kernel extension methods have shown good classification performance. However, two drawbacks still exist in these classification methods: (1) These methods adopt a \(L_{1}\)-minimization problem to achieve an approximate solution of sparse representation that is originally defined as a \(L_{0}\)-norm optimization problem, which may lead to an increase in the average classification error. (2) These methods employ linear programming, second-order cone programming or unconstrained quadratic programming algorithm to solve the \(L_{1}\)-minimization problem, whose computing time increases rapidly with the number of training samples. In this paper, I incorporate the idea of manifold learning into kernel extension methods of SRC, and propose a novel classification approach, named kernel local sparse representation-based classifier (KLSRC). In the kernel feature space, KLSRC represents a target sample as a linear combination of merely a few nearby training samples, which is called a kernel local sparse representation (KLSR). And then the target sample is assigned to the class that minimizes the residual between itself and the partial KLSR constructed by its training neighbors from this class. Experimental results demonstrate the effectiveness of the proposed classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jain AK, Duin PW, Mao JC (2000) Statistical pattern recogniton: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37. doi:10.1109/34.824819

    Article  Google Scholar 

  2. Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. Informatica 31:249–268. doi:10.1007/s10462-007-9052-3

    MathSciNet  MATH  Google Scholar 

  3. Mller KR, Mika S, Rtsch G, Tsuda K, Schlkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Networks 12(2):181–201. doi:10.1109/72.914517

    Article  Google Scholar 

  4. Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Schlkopf B, Smola A, Mller KR (1997) Kernel principal component analysis. In Lecture Notes Comput Sci 1327:583–588. doi:10.1007/BFb0020217

    Article  Google Scholar 

  6. Mika S, Rtsch G, Weston J, Schlkopf B, Mller KR (1999) Fisher discriminant analysis with kernels. In IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing IX, 41–48. doi:10.1109/NNSP.1999.788121

  7. Yu K, Ji L, Zhang XG (2002) Kernel nearest-neighbor algorithm. Neural Process Lett 15(2):147–156. doi:10.1023/A:1015244902967

    Article  MATH  Google Scholar 

  8. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227. doi:10.1109/TPAMI.2008.79

    Article  Google Scholar 

  9. Zhang L, Zhou WD, Chang PC, Liu J, Yan Z, Wang T, Li FZ (2012) Kernel sparse representation-based classifier. IEEE Trans Signal Process 60(4):1684–1695. doi:10.1109/TSP.2011.2179539

    Article  MathSciNet  Google Scholar 

  10. Yin J, Liu ZH, Jin Z, Yang WK (2012) Kernel sparse representation based classification. Neurocomputing 77:120–128. doi:10.1016/j.neucom.2011.08.018

    Article  Google Scholar 

  11. Jian M, Jung C (2013) Class-discriminative kernel sparse representation-based classification using multi-objective optimization. IEEE Trans Signal Process 61(18):4416–4427. doi:10.1109/TSP.2013.2271479

    Article  MathSciNet  Google Scholar 

  12. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326. doi:10.1126/science.290.5500.2323

    Article  Google Scholar 

  13. He XF, Yan SC, Hu YX, Niyogi P, Zhang HJ (2005) Face recognition using Laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340. doi:10.1109/TPAMI.2005.55

    Article  Google Scholar 

  14. Wang RP, Chen XL (2009) Manifold discriminant analysis. In IEEE Conf Computer Vision and Pattern Recognition (CVPR), 429–436, doi:10.1109/CVPR.2009.5206850

  15. Martinez AM, Benavente R (1998) The AR face database. CVC Technical Report #24

  16. Murase H, Nayar SK (1995) Visual learning and recognition of 3d objects from appearance. Int J Comput Vis 14(1):5–24. doi:10.1007/BF01421486

    Article  Google Scholar 

  17. Mizukami Y, Tadamura K, Warrell J, Li P, Prince S (2010) CUDA implementation of deformable pattern recognition and its application to MNIST handwritten digit database. In Int Conf Pattern Recognition (ICPR), 2001–2004, doi: 10.1109/ICPR.2010.493

  18. Zhang D, Kong WK, You J, Wong M (2003) Online palmprint identification. IEEE Trans Pattern Anal Mach Intell 25(9):1041–1150. doi:10.1109/TPAMI.2003.1227981

    Article  Google Scholar 

  19. Belhumeur PN, Hepanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. doi:10.1007/BFb0015522

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q. Kernel Local Sparse Representation Based Classifier. Neural Process Lett 43, 85–95 (2016). https://doi.org/10.1007/s11063-014-9403-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9403-4

Keywords

Navigation