Skip to main content
Log in

Pseudo Almost Periodic Solutions for High-Order Hopfield Neural Networks with Time-Varying Leakage Delays

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, high-order Hopfield neural networks with time-varying leakage delays are investigated. By applying Lyapunov functional method and differential inequality techniques, a set of sufficient conditions are obtained for the existence and exponential stability of pseudo almost periodic solutions of the model. Some simulations are carried out to support the theoretical findings. Our results improve and generalize those of the previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang Z, Fang J, Liu X (2008) Global stability of stochastic high-order neural networks with discrete and distributed delays. Chaos Solitons Fractals 36(2):388–396

    Article  MathSciNet  MATH  Google Scholar 

  2. Mohamad S (2007) Exponential stability in Hopfield-type neural networks with impulses. Chaos Solitons Fractals 32(2):456–467

    Article  MathSciNet  MATH  Google Scholar 

  3. Jiang Y, Yang B, Wang J, Shao C (2009) Delay-dependent stability criterion for delayed Hopfield neural networks. Chaos Solitons Fractals 39(5):2133–2137

    Article  MathSciNet  MATH  Google Scholar 

  4. Xiao B, Meng H (2009) Existence and exponential stability of positive almost periodic solutions for high-order Hopfield neural networks. Appl Math Model 33(1):532–542

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu Y, You Z (2007) Multi-stability and almost periodic solutions of a class of recurrent neural networks. Chaos Solitons Fractals 33(2):554–563

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu B, Huang L (2007) Existence and exponential stability of periodic solutions for a class of Cohen-Grossberg neural networks with time-varying delays. Chaos Solitons Fractals 32(2):617–627

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang F, Li Y (2007) Almost periodic solutions for higher-order Hopfield neural networks without bounded activation functions. Electron J Differ Equ 2007:1–10

    Article  MathSciNet  MATH  Google Scholar 

  8. Ou CX (2008) Anti-periodic solutions for high-order Hopfield neural networks. Comput Math Appl 56(7):1838–1844

    Article  MathSciNet  MATH  Google Scholar 

  9. Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  10. Samoilenko AM, Perestyuk NA (1995) Impulsive differential equations. World Scientific, Singapore

    Book  MATH  Google Scholar 

  11. Akhmet MU (2003) On the general problem of stability for impulsive differential equations. J Math Anal Appl 288(2):182–196

    Article  MathSciNet  MATH  Google Scholar 

  12. Gopalsamy K (2004) Stability of artificial neural networks with impulses. Appl Math Comput 154(3):783–813

    MathSciNet  MATH  Google Scholar 

  13. Guan Z, Chen G (1999) On delayed impulsive Hopfield neural networks. Neural Netw 12(2):273–280

    Article  Google Scholar 

  14. Zhou Q (2009) Global exponential stability of BAM neural networks with distributed delays and impulses. Nonlinear Anal 10(1):144–153

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu D, Yang Z (2005) Impulsive delay differential inequality and stability of neural networks. J Math Anal Appl 305(1):107–120

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang YQ, Cao JD (2007) Stability and periodicity in delayed cellular neural networks with impulsive effects. Nonlinear Anal 8(1):362–374

    Article  MathSciNet  MATH  Google Scholar 

  17. Li Y, Wang J (2008) An analysis on the global exponential stability and the existence of periodic solutions for non-autonomous hybrid BAM neural networks with distributed delays and impulses. Comput Math Appl 56(9):2256–2267

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang J, Gui Z (2009) Existence and stability of periodic solutions of high-order Hopfield neural networks with impulses and delays. J Comput Appl Math 224(2):602–613

    Article  MathSciNet  MATH  Google Scholar 

  19. Bouzerdoum A, Pinter RB (1993) Shunting inhibitory cellular neural networks: derivation and stability analysis. IEEE Trans Circuits Syst I 40(3):215–221

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen L, Zhao HY (2008) Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients. Chaos Solitons Fractals 35(2):351–357

    Article  MathSciNet  MATH  Google Scholar 

  21. Xia YH, Cao JD, Huang ZK (2007) Existence and exponential stability of almost periodic solution for shunting inhibitory cellular neural networks with impulses. Chaos Solitons Fractals 34(5):1599–1607

    Article  MathSciNet  MATH  Google Scholar 

  22. Shao JY (2008) Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays. Phys Lett A 372(30):5011–5016

    Article  MATH  Google Scholar 

  23. Li YK, Xu EL, Zhang TW (2010) Existence and stability of anti-periodic solution for a class of generalized neural networks with impulsives and arbitrary delays on time scales. J Inequal Appl, vol 2010. Article ID 132790

  24. Ou CX (2008) Anti-periodic solutions for high-order Hopfield neural networks. Comput Math Appl 56(7):1838–1844

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang ZD, Peng LQ, Xu M (2010) Anti-periodic solutions for high-order cellular neural netowrks with time-varying delays. Electr J Differ Equ 2010(5):1–9

    Google Scholar 

  26. Zhang AP (2013) Existence and exponential stability of anti-periodic solutions for HCNNs with time-varying leakage delays. Adv Differ Equ 162:1–16

    MathSciNet  Google Scholar 

  27. Peng L, Wang WT (2013) Anti-periodic solutions for shunting inhibitory cellular neural networks with time-varying delays in leakage terms. Neurocomputing 111:27–33

    Article  Google Scholar 

  28. Shi PL, Dong LZ (2010) Existence and exponential stability of anti-periodic solutions of Hopfield neural networks with impulses. Appl Math Comput 216(2):623–630

    MathSciNet  MATH  Google Scholar 

  29. Wang Q, Fang YY, Li H, Su LJ, Dai BX (2014) Anti-periodic solutions for high-order Hopfield neural networks with impulses. Neurocomputing 138:339–346

    Article  Google Scholar 

  30. Kosko B (1992) Neural networks and fuzzy systems. Prentice Hall, New Delhi

    MATH  Google Scholar 

  31. Haykin S (1999) Neural networks. Prentice Hall, New Jersey

    MATH  Google Scholar 

  32. Gopalsamy K (1992) Stability and oscillations in delay differential equations of population dynamics mathematics and its applications, vol 74. Kluwer Academic, Dordrecht

    Book  MATH  Google Scholar 

  33. Gopalsamy K (2007) Leakage delays in BAM. J Math Anal Appl 325(2):1117–1132

    Article  MathSciNet  MATH  Google Scholar 

  34. Li X, Rakkiyappan R, Balasubramaniam P (2011) Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J Frankl Inst 348(2):135–155

    Article  MathSciNet  MATH  Google Scholar 

  35. Balasubramaniam P, Vembarasan V, Rakkiyappan R (2011) Leakage delays in T-S fuzzy cellular neural networks. Neural Process Lett 33(2):111–136

    Article  MATH  Google Scholar 

  36. Liu B (2013) Global exponential stability for BAM neural networks with time-varying delays in the leakage terms. Nonlinear Anal 14(1):559–566

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen Z (2013) A shunting inhibitory cellular neural network with leakage delays and continuously distributed delays of neutral type. Neural Comput Appl 23(7):2429–2434

    Article  Google Scholar 

  38. Zhang H, Yang M (2013) Global exponential stability of almost periodic solutions for SICNNs with continuously distributed leakage delays. Abstr Appl Anal, vol 2013. Article ID307981

  39. Liu BW (2015) Pseudo almost periodic solution for CNNs with continuously distributed leakage delays. Neural Process Lett 42(1):233–256

    Article  Google Scholar 

  40. Rihani S, Kessab A, Chérif F (2016) Pseudo almost periodic solutions for a Lasota-Wazewska model. Electr J Differ Equ 2016(62):1–17

    MathSciNet  MATH  Google Scholar 

  41. Jiang AN (2016) Pseudo almost periodic solutions for a model of hematopoiesis with an oscillating circulation loss rate. Math Methods Appl Sci 39(12):3215–3225

    Article  MathSciNet  MATH  Google Scholar 

  42. Xiong WM (2016) New results on positive pseudo-almost periodic solutions for a delayed Nicholson\(^{,}\)s blowflies model. Nonlinear Dyn 85(1):563–571

    Article  MathSciNet  MATH  Google Scholar 

  43. Chérif F (2015) Pseudo almost periodic solution of Nicholson\(^{,}\)s blowflies model with mixed delays. Appl Math Model 39(17):5152–5163

    Article  MathSciNet  Google Scholar 

  44. Shao JY (2015) Pseudo almost periodic solutions for a Lasota-Wazewska model with an oscillating death rate. Appl Math Lett 43:90–95

    Article  MathSciNet  MATH  Google Scholar 

  45. Meng JX (2013) Global exponential stability of positive pseudo-almost periodic solutions for a model of hematopoiesis. Abstr Appl Anal, vol 2013. Article ID 463076

  46. Chérif F (2012) Existance and global exponential stability of pseudo almost periodic solution for SICNNs with mixed delays. J Appl Math Comput 39(1–2):235–251

    Article  MathSciNet  MATH  Google Scholar 

  47. Cuevas C, Sepúlveda A, Soto H (2011) Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations. Appl Math Comput 218(5):1735–1745

    MathSciNet  MATH  Google Scholar 

  48. Dads EA, Lhachimi L (2010) Pseudo almost periodic solutions for equation with piecewise constant argument. J Math Anal Appl 371(2):842–854

    Article  MathSciNet  MATH  Google Scholar 

  49. Diagana T (2007) Existence and uniqueness of pseudo-almost periodic solutions to some classes of partial evolution equations. Nonlinear Anal 66(2):384–395

    Article  MathSciNet  MATH  Google Scholar 

  50. Pinto M (2010) Pseudo-almost periodic solutions of neutral integral and differential equations with applications. Nonlinear Anal 72(12):4377–4383

    Article  MathSciNet  MATH  Google Scholar 

  51. Boukli-Hacene N, Ezzinbi K (2009) Weighted pseudo almost periodic solutions for some partial functional differential equations. Nonlinear Anal 71(9):3612–3621

    Article  MathSciNet  MATH  Google Scholar 

  52. Agarwal RP, Andrade B, Cuevas C (2010) Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal 11(5):3532–3554

    Article  MathSciNet  MATH  Google Scholar 

  53. Hernández E, Henriquez H (2008) Pseudo-almost periodic solutions for non-autonomous neutral differential equations with unbounded delay. Nonlinear Anal 9(2):430–437

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang C (2003) Almost periodic type functions and ergodicity. Science Press, Beijing

    Book  MATH  Google Scholar 

  55. Fink AM (1974) Almost periodic differential equations, vol 377. Lecture Notes in Mathematics. Springer, Berlin

  56. Wang WT, Liu BW (2014) Global exponential stability of pseudo almost periodic solutions for SICNNs with time-varying leakage delays. Abstr Appl Anal, vol 2014. Article ID 967328

  57. Xu CJ, Zhang QM (2014) Existence and stability of pseudo almost periodic solutions for shunting inhibitory cellular neural networks with neutral type delays and time-varying leakage delays. Network: Comput Neural Syst 25(4):168–192

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (No. 61673008 and No. 11261010), High-level Innovative Talent Item of Guizhou Province (2016) Natural Science and Technology Foundation of Guizhou Province (J[2015]2025) and 125 Special Major Science and Technology of Department of Education of Guizhou Province ([2012]011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, P. Pseudo Almost Periodic Solutions for High-Order Hopfield Neural Networks with Time-Varying Leakage Delays. Neural Process Lett 46, 41–58 (2017). https://doi.org/10.1007/s11063-016-9573-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9573-3

Keywords

Mathematics Subject Classification

Navigation