Skip to main content
Log in

A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel CCA-based dimensionality reduction method called generalized fuzzy canonical correlation analysis (GFCCA) is proposed. GFCCA combines the generalized canonical correlation analysis and fuzzy set theory. GFCCA redefines the fuzzy between-class and within-class scatter matrices that relate directly to the samples distribution information. For nonlinear separated problems, we extend the kernel extension of GFCCA with positive definite kernels and indefinite kernels. Experiments on real-world data sets are performed to test and evaluate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hel-Or Y (2004) The canonical correlations of color images and their use for demosaicing. HP Labs Technical Report, HPL-2003-164(R.1), Feb 2004

  2. Loog M, van Ginneken B, Duin RPW (2005) Dimensionality reduction of image features using the canonical contextual correlation projection. Pattern Recognit 38:2409–2418

    Article  Google Scholar 

  3. Yuan YH, Sun QS (2014) Multiset canonical correlations using globality preserving projections with applications to feature extraction and recognition. IEEE Trans Neural Netw Learn Syst 25(6):1131–1146

    Article  Google Scholar 

  4. Nielsen AA (2002) Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans Image Process 11:293–305

    Article  Google Scholar 

  5. Yuan YH, Sun QS, Ge HW (2014) Fractional-order embedding canonical correlation analysis and its applications to multi-view dimensionality reduction and recognition. Pattern Recognit 47:1411–1424

    Article  MATH  Google Scholar 

  6. Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16:2639–2664

    Article  MATH  Google Scholar 

  7. Yuan YH, Li Y et al (2017) Laplacian multiset canonical correlations for multiview feature extraction and image recognition. Multimed Tools Appl 76(1):731–755

    Article  Google Scholar 

  8. Wang F, Zhang D (2013) A new locality-preserving canonical correlation analysis algorithm for multi-view dimensionality reduction. Neural Process Lett 37(2):135–146

    Article  Google Scholar 

  9. Peng Y, Zhang D, Zhang J (2010) A new canonical correlation analysis algorithm with local discrimination. Neural Process Lett 31(1):1–15

    Article  MathSciNet  Google Scholar 

  10. Melzer T, Reiter M, Bischof H (2003) Appearance models based on kernel canonical correlation analysis. Pattern Recognit 36:1961–1971

    Article  MATH  Google Scholar 

  11. Kidron E, Schechner YY, Elad M (2005) Pixels that sound. IEEE Proc Comput Vis Pattern Recognit 1:88–95

    Google Scholar 

  12. Fortuna B (2004) Kernel canonical correlation analysis with applications, In: SIKDD, at Multiconference IS 2004, 12–15 Oct 2004. Ljubljana, Slovenia

  13. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Sun T, Chen S, Yang J, et al. (2008) A supervised combined feature extraction method for recognition. Proceedings of the IEEE International Conference on Data Mining. Pisa, Italy, pp 1043–1048

  15. Sun Q-S, Liu Z-D, Heng P-A, Xia D-S (2005) A theorem on the generalized canonical projective vectors. Pattern Recognit 38:449–452

    Article  MATH  Google Scholar 

  16. Yang J, Fan LY (2014) A novel indefinite kernel dimensionality reduction algorithm: weighted generalized indefinite kernel discriminant analysis. Neural Process Lett 40:301–313

    Article  Google Scholar 

  17. Pekalska E, Haasdonk B (2009) Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Trans Pattern Anal Mach Intell 31(6):1017–1032

    Article  Google Scholar 

  18. Zheng W, Zou C, Zhao L (2005) An improved algorithm for kernel principal component analysis. Neural Process Lett 22(1):49–56

    Article  Google Scholar 

  19. Haasdonk B (2005) Feature space interpretation of SVMs with indefinite kernels. IEEE Trans Pattern Anal Mach Intell 27(4):482–492

    Article  Google Scholar 

  20. Keller JM, Gray MR, Givern JA (1985) A fuzzy k-nearest neighbour algorithm. IEEE Trans Syst Man Cybern 15(4):580–585

    Article  Google Scholar 

  21. Cui Y, Fan Liya (2012) Feature extraction using fuzzy maximum margin criterion. Neurocomputing 86:52–58

    Article  Google Scholar 

  22. Yang W, Wang J et al (2009) Feature extraction using fuzzy inverse FDA. Neurocomputing 72:3384–3390

    Article  Google Scholar 

  23. Kwak K-C, Pedrycz W (2005) Face recognition using a fuzzy fisherface classifier. Pattern Recognit 38:1717–1732

    Article  Google Scholar 

  24. Schölkopf B, Herbrich R, Smola A, (2001) A generalized representer theorem, Lecture Notes in Computer Science 2111:416–426

  25. Goldfarb L (1985) A new approach to pattern recognition. Pattern Recognit 2:241–402

    MathSciNet  MATH  Google Scholar 

  26. Yang J, Fan L (2012) Weighted generalized indefinite kernel discriminant analysis using fuzzy memberships. J Shandong Univ (Eng Sci) 42(3):31–38

    Google Scholar 

  27. Pekalska E, Duin R (2005) The dissimilarity representation for pattern recognition. Foundations and applications. World Scientific, 2005

  28. Bognar J (1974) Indefinite inner product space. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Sun Tingkai, Chen Songcan (2007) Class label versus sample label-based CCA. Appl Math Comput 185:272–283

    MathSciNet  MATH  Google Scholar 

  30. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

  31. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61273251, 61673220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan-Sen Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, QS. A Novel Generalized Fuzzy Canonical Correlation Analysis Framework for Feature Fusion and Recognition. Neural Process Lett 46, 521–536 (2017). https://doi.org/10.1007/s11063-017-9600-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9600-z

Keywords

Navigation