Skip to main content
Log in

Efficient Color Texture Classification Using Color Monogenic Wavelet Transform

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Color textures are among the most important visual attributes in image analysis. From the practical point view of color texture image analysis, this paper proposes an effective multi-scale color texture classification algorithm that is rotation and scale invariant using non-marginal color monogenic wavelet transform. The proposed algorithm exploits the color monogenic wavelet transform to obtain multi-scale representation of training samples for each texture class. The coefficients of color monogenic wavelet transform represent a magnitude and three phases: two phases encode local color information while the third contains geometric information of color texture image. The multi-scale feature vector is composed of mean value, standard deviation, energy and entropy at different scales of each of the directional sub-bands. The experimental results of average correct classification rates are 98.67, 99.08 and \(99.89\%\) which are obtained from different color texture databases demonstrate its superior performance and robustness of the proposed classifier. The proposed color texture feature vector is also shown to be effective for color texture classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Van de Wouwer G, Scheunders P, Levens S, Van Dyck D (1999) Wavelet correlation signatures for color texture characterization. Pattern Recognit 32(3):443–451

    Article  Google Scholar 

  2. Scharcanski J (2007) A wavelet-based approach for analyzing industrial stochastic textures with applications. IEEE Trans Syst Man Cybern 37(1):10–22

    Article  Google Scholar 

  3. Kwitt R, Meerwald P, Uhl A (2011) Efficient texture image retrieval using copulas in a Bayesian framework. IEEE Trans Image Process 20(7):2063–2077

    Article  MathSciNet  Google Scholar 

  4. Farsi H, Mohamadzadeh S (2013) Colour and texture feature-based image retrieval by using hadamard matrix in discrete wavelet transform. IET Image Process 7(3):212–218

    Article  MathSciNet  Google Scholar 

  5. de Ves E, Acevedo D, Ruedin A, Benavent X (2014) A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval. Pattern Recognit 47(9):2925–2939

    Article  Google Scholar 

  6. Selesnick IW, Baraniuk RG, Kingsbury RG (2005) The dual-tree complex wavelet transform. IEEE Trans Signal Process 22(6):123–151

    Article  MathSciNet  Google Scholar 

  7. Celik T, Tjahjadi T (2009) Multiscale texture classification using dual-tree complex wavelet transform. Pattern Recognit Lett 30(3):331–339

    Article  Google Scholar 

  8. Celik T, Tjahjadi T (2011) Bayesian texture classification and retrieval based on multiscale feature vector. Pattern Recognit Lett 32(2):159–167

    Article  Google Scholar 

  9. Arivazhagan S, Ganesan L, Subash Kumar TG (2006) Texture classification using ridgelet transform. Pattern Recognit Lett 27(16):1875–1883

    Article  Google Scholar 

  10. Eduardo Bayro C (2005) Multi-resolution image analysis using the quaternion wavelet transform. Numer Algorithms 39(3):35–55

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan WL, Choi H, Baraniuk RC (2008) Coherent multiscale image processing using dual-tree quaternion wavelets. IEEE Trans Image Process 17(7):1069–1082

    Article  MathSciNet  Google Scholar 

  12. Wang QW, Li CK (2009) Ranks and the least-norm of the general solution to a system of quaternion matrix equations. Linear Algebra Appl 430(5–6):1626–1640

    Article  MathSciNet  MATH  Google Scholar 

  13. Chenlei G, Liming Z (2010) A novel multi-resolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun YF, Chen SY, Yin B (2011) Color face recognition based on quaternion matrix representation. Pattern Recognit Lett 32(4):597–606

    Article  Google Scholar 

  15. Menanno GM, Bihan NL (2010) Quaternion polynomial matrix diagonalization for the separation of polarized convolutive mixture. Signal Process 90(7):2219–2231

    Article  MATH  Google Scholar 

  16. Soulard R, Carre P (2011) Quaternionic wavelets for texture classification. Pattern Recognit Lett 32(13):1669–1678

    Article  Google Scholar 

  17. Gai S, Yang G, Zhang S (2013) Multiscale texture classification using reduced quaternion wavelet transform. Electron Commun 67(3):233–241

    Google Scholar 

  18. Ginzberg P, Waleden AT (2013) Matrix-valued and quaternion wavelets. IEEE Trans Signal Process 61(6):1357–1367

    Article  MathSciNet  Google Scholar 

  19. Ahror B, Djamal B (2014) A new generalized \(\alpha \) scale spaces quadrature filters. Pattern Recognit 47(10):3209–3224

    Article  Google Scholar 

  20. Libao Z, Aoxue L, Zhongjun Z, Kaina Y (2016) Global and local saliency analysis for the extraction of residential areas in high-spatial-resolution remote sensing image. IEEE Trans Geosci Remote Sens 54(7):3750–3763

    Article  Google Scholar 

  21. Nicolas LB, Sangwine SJ, Ell TA (2014) Instantaneous frequency and amplitude of orthocomplex modulated signals based on quaternion Fourier transform. Signal Process 94(1):308–318

    Google Scholar 

  22. Chaorong L, Jianping L, Bo F (2013) Magnitude-phase of quaternion wavelet transform for texture representation using multilevel copula. IEEE Signal Process Lett 20(8):799–802

    Article  Google Scholar 

  23. Ding J, Xian M, Cheng HD (2015) An algorithm based on LBPV and MIL for left atrial thrombi detection using transesophageal echocardiography. In: Proceedings of IEEE international conference on image processing (ICIP), Canada, Quebec City, pp 4224–4227

  24. Chan TS, Kumar A (2012) Reliable ear identification using 2-D quadrature filters. Pattern Recognit Lett 33(14):1870–1881

    Article  Google Scholar 

  25. Kumar A, Chan TS (2013) Robust ear identification using sparse representation of local texture descriptors. Pattern Recognit 46(1):73–85

    Article  Google Scholar 

  26. Seung HL, Baddar WJ, Ro. YM (2016) Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos. Pattern Recognit 54(C):52–67

    Google Scholar 

  27. Felsberg M, Sommer G (2001) The monogenic signal. IEEE Trans Signal Process 49(12):3136–3144

    Article  MathSciNet  MATH  Google Scholar 

  28. User M, Sage D, Ville D (2009) Multiresolution monogenic signal analysis using the Riesz–Laplace wavelet transform. IEEE Trans Image Process 18(11):2402–2418

    Article  MathSciNet  MATH  Google Scholar 

  29. Olhede SC, Metikas G (2009) The monogenic wavelet transform. IEEE Trans Signal Process 57(9):3426–3441

    Article  MathSciNet  Google Scholar 

  30. Held S, Storath M, Massopust P, Forster B (2010) Steerable wavelet frames based on the Riesz transform. IEEE Trans Image Process 19(3):653–667

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhiyong Z, Liwei S, Qicai Z, Yanling C (2015) A new image retrieval model based on monogenic signal representation. J Vis Commun Image Represent 33(c):85–93

    Google Scholar 

  32. Alessandrini M, Bernard O, Basarab A, Liebott H (2013) Multiscale optical flow computation from the monogenic signal. IRBM 34(1):33–37

    Article  Google Scholar 

  33. Raghavendra U, Rajendra Acharya U, Fujita H, Gudigar A, Tan JH, Shreesha C (2016) Application of Gabor wavelet and Locality Sensitive Discriminant Analysis for automated identification of breast cancer using digitizedmammogram images. Appl Soft Comput 46(C):151–161

    Article  Google Scholar 

  34. Ganggang D, Na W, Gangyao K (2014) Sparse representation of monogenic signal: with application to target recognition in SAR images. IEEE Signal Process Lett 21(8):952–956

    Article  Google Scholar 

  35. Clausel M, Thomas O, valerie P (2014) The monogenic synchrosqueezed wavelet transform: a tool for the decomposition/demodulation of AM-FM images. Appl Comput Harmonic Anal 39(3):450–486

    Article  MathSciNet  MATH  Google Scholar 

  36. Knar P, Chattopadhyay P (2015) Multi-class fault diagnosis of induction motor using Hilbert and Wavelet transform. Appl Soft Comput 30(C):341–352

    Article  Google Scholar 

  37. Olhede SC, Ramirez D, Schreier PJ (2014) Detecting directionality in random fields using the monogenic signal. IEEE Trans Inf Theory 60(10):6491–6510

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang L, Zhang, D, Guo Z (2010) Monogenic-LBP: a new approach for rotation invariant texture classification. In: IEEE international conference on image processing, pp 2677–2680

  39. Ding J, Cheng H, Xian M, Zhang Y, Xu F (2015) Local-weighted Citation-kNN algorithm for breast ultrasound image classification. Optik Int J Light Electron Opt 126(24):5188–5193

    Article  Google Scholar 

  40. Demarcq G, Mascarilla L, Berthier M, Courtellemont P (2011) The color monogenic signal: application to color edge detection and color optical flow. Math Imaging Vis 40(3):269–284

    Article  MathSciNet  MATH  Google Scholar 

  41. Soulard R, Carre P, Fernandez-Maloigne C (2013) Vector extension of monogenic wavelets for geometric representation of color images. IEEE Trans Image Process 22(3):1070–1083

    Article  MathSciNet  Google Scholar 

  42. Van D, Ville D, Blu T, Unser M (2005) Isotropic polyharmonic b-splines: scaling functions and wavelets. IEEE Trans Image Process 14(11):1798–1813

    Article  MathSciNet  Google Scholar 

  43. Duits R, Felsberg M, Florack L, Platel B (2003) \(\alpha \)-scale spaces on a bounded domain. In: Proceedings of the Scale-Space, LNCS 2695. Springer, Berlin, Heidelberg, pp 494–510

  44. Pudil P, Novovicona J, Kittler J (1994) Floating search methods in feature selection. Pattern Recognit Lett 15(11):1119–1125

    Article  Google Scholar 

  45. Database VisTex of color textures of MIT, USA. ftp://whitechape.media.mit.edu/pub/VisTex

  46. Bacles AR, Casampva D, Bruno OM (2012) Color texture analysis based on fractal descriptors. Pattern Recognit 45(5):1984–1992

    Article  Google Scholar 

  47. Database Outex of color textures of Oulu, FINLAND. http://www.outex.oulu.fi/outex.php

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China (61563037); Department of Education Science and Technology of Jiangxi Province under Grant No. (GJJ150755).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gai.

Appendix: Clifford Algebra

Appendix: Clifford Algebra

The Clifford algebrais defined by the vector space V and quadratic form. Let \(\mathfrak {R}_{n,0} \) is non-commutative algebra generated by the vectors \(\left\{ {e_1 ,e_2 ,\ldots ,e_n } \right\} \). Given two vectors u and v in \(\mathfrak {R}^{n}\), then the geometric product uv is defined as follows:

$$\begin{aligned} uv=u\cdot v+u\wedge v \end{aligned}$$
(20)

where \(u\cdot v\) is the inner product and \(u\wedge v\) is the wedge product. This shows that \(\mathfrak {R}^{n}\) contains not only scalars and vectors but also bi-vectors and multi-vectors.

The vector space \(\mathfrak {R}_{n,0} \) is of dimension of \(2^{n}\) and its basis is given by \(\left\{ {e_i \left( {i=1,2,\ldots n} \right) } \right\} \). Then the Dirac operator that is defined on \(\mathfrak {R}_{n,0} \) is given by:

$$\begin{aligned} D=\sum _{k=1}^n {e_k \frac{\partial }{\partial x_k }} \end{aligned}$$
(21)

where for all \(i,j\in \left\{ {1,2,\ldots ,n} \right\} \), \(e_i e_j +e_j e_i =2\delta _{i,j} \), \(\delta _{i,j} \) is the delta function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, S. Efficient Color Texture Classification Using Color Monogenic Wavelet Transform. Neural Process Lett 46, 609–626 (2017). https://doi.org/10.1007/s11063-017-9608-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9608-4

Keywords

Navigation