Skip to main content
Log in

Supervoxel Segmentation and Bias Correction of MR Image with Intensity Inhomogeneity

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Supervoxel segmentation has become an essential tool to medical image analysis for three-dimension MR image. However, in no consideration of the intensity inhomogeneity in 2D/3D MR image, the state-of-the-art supervoxel segmentation methods do not satisfy the further analysis, such as tissue classification according to intensity feature. In order to overcome the above-mentioned issues, we propose a modified supervoxel segmentation method for three-dimension MR image, which integrates the bias field into the weighted distance metric to determine the nearest cluster center. The supervoxel segmentation and bias correction can be simultaneously completed in our method. Especially, the bias corrected image lays the foundation for the supervoxel classification in accordance with the intensity feature. The experimental results and quantitative evaluation showed that the supervoxels obtained by our method are adherence to the MR tissue boundaries, and the bias corrected image is positive for the intensity feature extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kirchhoff BA, Gordon BA, Head D (2014) Prefrontal gray matter volume mediates age effects on memory strategies. Neuroimage 90(8):326–334

    Article  Google Scholar 

  2. Su P, Yang J, Li H et al (2013) Superpixel-based segmentation of glioblastoma multiforme from multimodal mr images[M]. Multimodal Brain Image Anal 8159:74–83

    Article  Google Scholar 

  3. Ren X, Malik J (2003) Learning a Classification Model for Segmentation[C]. In: Proceedings of IEEE international conference on computer vision. IEEE, 2008, vol 1. pp 10–17

  4. Lucchi A, Smith K, Achanta R et al (2012) Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features. IEEE Trans Med Imaging 31(2):474–486

    Article  Google Scholar 

  5. Kong Y, Deng Y, Dai Q (2015) Discriminative clustering and feature selection for brain MRI segmentation. IEEE Signal Process Lett 22(5):573–577

    Article  Google Scholar 

  6. Verma N, Cowperthwaite MC, Markey MK (2013) Superpixels in brain MR image analysis. Conf Proc IEEE Eng Med Biol Soc 2013:1077–1080

  7. Achanta R, Shaji A, Smith K et al (2012) SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Article  Google Scholar 

  8. Tian Z, Liu L Z, Fei B (2015) A supervoxel-based segmentation method for prostate MR images[C]. In: SPIE medical imaging. International society for optics and photonics

  9. Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging 25(9):1233–1245

    Article  Google Scholar 

  10. Achanta R, Shaji A, Smith K et al (2010) Slic superpixels[R]

  11. Van Leemput K, Maes F, Vandermeulen D et al (1999) Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging 18(10):885

    Article  Google Scholar 

  12. Xiong H, Gao J, Zhu C et al (2014) An interleaved otsu segmentation for MR images with intensity inhomogeneity. Ieice Trans Inf Syst 97(11):2974–2978

    Article  Google Scholar 

  13. Li C, Gore JC, Davatzikos C (2014) Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn Reson Imaging 32(7):913–923

    Article  Google Scholar 

  14. Li C, Xu C, Anderson A W, et al (2009) MRI tissue classification and bias field estimation based on coherent local intensity clustering: a unified energy minimization framework[C]. In: International conference on information processing in medical imaging. Springer, Berlin, pp 288–299

  15. Achanta R, Shaji A, Smith K et al (2010) SLIC superpixels. EDFL Technical Report no. 149300, June 2010

  16. Yu J, Yang X, Gao F, et al (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern

  17. Li C, Gatenby C, Wang L, et al (2009) A robust parametric method for bias field estimation and segmentation of MR images[C]. In: IEEE conference on computer vision and pattern recognition, CVPR 2009. IEEE Xplore 2009, pp 218–223

  18. Gao J, Li C, Feng C et al (2014) Non-locally regularized segmentation of multiple sclerosis lesion from multi-channel MRI data. Magn Reson Imaging 32(8):1058–1066

    Article  Google Scholar 

  19. Xie M, Gao J, Zhu C et al (2015) A modified method for MRF segmentation and bias correction of MR image with intensity inhomogeneity. Med Biol Eng Comput 53(1):23–35

    Article  Google Scholar 

  20. Cocosco CA, Kollokian V, Kwan KS et al (1997) BrainWeb: online Interface to a 3D MRI simulated brain database. Neuroimage 5:425

    Google Scholar 

  21. Macqueen J (1967) Some methods for classification and analysis of multivariate observations[C]. In: Proceedings of berkeley symposium on mathematical statistics and probability, pp 281–297

  22. Shattuck DW, Sandor-Leahy SR, Schaper KA et al (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876

    Article  Google Scholar 

  23. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  Google Scholar 

  24. Pham DL (2001) Robust fuzzy segmentation of magnetic resonance images[C]. In: Fourteenth IEEE symposium on computer-based medical systems. IEEE Computer Society, p 127

  25. Friston KJ (2013) Statistical parametric mapping: the analysis of functional brain images. Neurosurgery 61(1):216–216

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) via grant 61401473, 61701078. The authors thank Dr. Youyong Kong for his help with running SLIC method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Dai, X., Zhu, C. et al. Supervoxel Segmentation and Bias Correction of MR Image with Intensity Inhomogeneity. Neural Process Lett 48, 153–166 (2018). https://doi.org/10.1007/s11063-017-9704-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9704-5

Keywords

Navigation