Skip to main content
Log in

A Novel Flower Pollination Algorithm for Modeling the Boiler Thermal Efficiency

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The flower pollination algorithm (FPA) is a nature-inspired optimization algorithm. To improve the solution quality and convergence speed of FPA, we proposed a novel flower pollination algorithm (NFPA) which is a hybrid algorithm based on original FPA and wind driven optimization algorithm. Simulation experiments demonstrate that NFPA has better search performance on classical numerical function optimizations compared with other the state-of-the-art optimization methods. In addition, the NFPA is adopted to optimize parameters of fast learning network to build thermal efficiency model of a 330 MW coal-fired boiler and a well-generalized model is obtained. Experimental results show that the tuned fast learning network model by NFPA has better prediction accuracy and generalization ability than other combination models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tunckaya Y, Koklukaya E (2015) Comparative prediction analysis of 600 MWe coal-fired power plant production rate using statistical and neural-based models. J Energy Inst 88(1):11–18

    Article  Google Scholar 

  2. Li G, Niu P, Wang H, Liu Y (2014) Least Square Fast Learning Network for modeling the combustion efficiency of a 300 WM coal-fired boiler. Neural Netw 51:57–66

    Article  MATH  Google Scholar 

  3. Tunckaya Y, Koklukaya E (2015) Comparative analysis and prediction study for effluent gas emissions in a coal-fired thermal power plant using artificial intelligence and statistical tools. J Energy Inst 88(2):118–125

    Article  Google Scholar 

  4. Li X, Niu P, Li G, Liu J (2017) An adaptive extreme learning machine for modeling NOx emission of a 300 MW circulating fluidized bed boiler. Neural Process Lett 3:1–20

    Google Scholar 

  5. Liu B, Hu J, Yan F, Turkson RF, Lin F (2016) A novel optimal support vector machine ensemble model for NOx emissions prediction of a diesel engine. Measurement 92:183–192

    Article  Google Scholar 

  6. Suntivarakorn R, Treedet W (2016) Improvement of boiler’s efficiency using heat recovery and automatic combustion control system. Energy Proc 100:193–197

    Article  Google Scholar 

  7. Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters self-adjusting extreme learning machine. Neural Process Lett 44(3):813–830

    Article  Google Scholar 

  8. Li G, Niu P, Zhang W, Liu Y (2013) Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching–learning-based optimization. Chemom Intell Lab Syst 126:11–20

    Article  Google Scholar 

  9. Li G, Niu P, Duan X, Zhang X (2014) Fast learning network: a novel artificial neural network with a fast learning speed. Neural Comput Appl 24(7–8):1683–1695

    Article  Google Scholar 

  10. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  11. Niu P, Chen K, Ma Y et al (2017) Model turbine heat rate by fast learning network with tuning based on ameliorated krill herd algorithm. Knowl-Based Syst 118:80–92

    Article  Google Scholar 

  12. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. MHS’95. IEEE, pp 39–43

  13. Kennedy J (2011) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Boston, pp 760–766

    Google Scholar 

  14. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu WJ, Shen M, Chen WN et al (2014) Differential evolution with two-level parameter adaptation. IEEE Trans Cybern 44(7):1080–1099

    Article  Google Scholar 

  16. Bayraktar Z, Komurcu M, Bossard JA, Werner DH (2013) The wind driven optimization technique and its application in electromagnetics. IEEE Trans Antennas Propag 61(5):2745–2757

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang XS (2012) Flower pollination algorithm for global optimization. In: UCNC. pp 240–249

  18. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  19. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(04):1659010

    Article  Google Scholar 

  20. Sayed SAF, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recognit Lett 77:21–27

    Article  Google Scholar 

  21. Wang R, Zhou Y, Qiao S, Huang K (2016) Flower pollination algorithm with bee pollinator for cluster analysis. Inf Proc Lett 116(1):1–14

    Article  Google Scholar 

  22. Xu S, Wang Y (2017) Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers Manag 144:53–68

    Article  Google Scholar 

  23. Ludwig SA (2012) Clonal selection based genetic algorithm for workflow service selection. In: IEEE congress on evolutionary computation (CEC) 2012. IEEE, pp 1–7

  24. Sarangi SK, Panda R, Priyadarshini S, Sarangi A (2016) A new modified firefly algorithm for function optimization. In: International conference on electrical, electronics, and optimization techniques (ICEEOT). IEEE, pp 2944–2949

  25. Wong ML, Guo YY (2008) Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm. Decis Support Syst 45(2):368–383

    Article  Google Scholar 

  26. Gao WF, Huang LL, Wang J, Liu SY, Qin CD (2016) Enhanced artificial bee colony algorithm through differential evolution. Appl Soft Comput 48:137–150

    Article  Google Scholar 

  27. Liang HT, Kang FH (2016) Adaptive mutation particle swarm algorithm with dynamic nonlinear changed inertia weight. Optik-Int J Light Electron Opt 127(19):8036–8042

    Article  Google Scholar 

  28. Aslani H, Yaghoobi M, Akbarzadeh-T MR (2015) Chaotic inertia weight in black hole algorithm for function optimization. In: International congress on technology, communication and knowledge (ICTCK) 2015. IEEE, pp 123–129

  29. Yang NC, Le MD (2015) Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters set. IET Gener Transm Distrib 9(7):644–654

    Article  Google Scholar 

  30. Li G, Qi X, Chen B et al (2017) Fast learning network with parallel layer perceptrons. Neural Process Lett 6:1–16

    Google Scholar 

  31. Wang J, Wu W, Li Z, Li L (2011) Convergence of gradient method for double parallel feedforward neural network. Int J Numer Anal Model 8:484–495

    MathSciNet  MATH  Google Scholar 

  32. Glover B (2014) Understanding flowers and flowering. Oxford University Press, Oxford

    Book  Google Scholar 

  33. Łukasik S, Kowalski PA (2015) Study of flower pollination algorithm for continuous optimization. In: Angelov P, Atanassov KT, Doukovska L, Hadjiski M, Jotsov V, Kacprzyk J, Kasabov N, Sotirov S, Szmidt E, Zadrożny S (eds) Intelligent Systems’2014. Springer, Cham, pp 451–459

    Google Scholar 

  34. Pant S, Kumar A, Ram M (2017) Flower pollination algorithm development: a state of art review. Int J Syst Assur Eng Manag 2:1–9

    Google Scholar 

  35. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226(2):1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  36. Nabil E (2016) A modified flower pollination algorithm for global optimization. Expert Syst Appl 57:192–203

    Article  Google Scholar 

  37. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower pollination algorithm. Neurocomputing 188:294–310

    Article  Google Scholar 

  38. Ramadas M, Kumar S (2016) An efficient hybrid approach using differential evolution and flower pollination algorithm. In: 6th international conference on cloud system and big data engineering (Confluence). IEEE, pp 59–64

  39. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: The 1998 IEEE international conference on IEEE world congress on computational intelligence evolutionary computation proceedings. IEEE, pp 69–73

  40. Ozcan E, Mohan CK (1998) Analysis of a simple particle swarm optimization system. Intell Eng Syst Through Artif Neural Netw 8:253–258

    Google Scholar 

  41. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  42. Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18

    Article  Google Scholar 

  43. Song Z, Kusiak A (2007) Constraint-based control of boiler efficiency: a data-mining approach. IEEE Trans Industr Inf 3(1):73–83

    Article  Google Scholar 

  44. Li G, Niu P, Liu C et al (2012) Enhanced combination modeling method for combustion efficiency in coal-fired boilers. Appl Soft Comput J 12(10):3132–3140

    Article  Google Scholar 

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Grant Nos. 61573306 and 61403331), Natural Science Foundation of Hebei Province (Grant No. F2016203427). We would like to thank reviewers and editors for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbai Li.

Ethics declarations

Conflict of interest

All authors declares that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, P., Li, J., Chang, L. et al. A Novel Flower Pollination Algorithm for Modeling the Boiler Thermal Efficiency. Neural Process Lett 49, 737–759 (2019). https://doi.org/10.1007/s11063-018-9854-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9854-0

Keywords

Navigation