Skip to main content
Log in

Learning Distance Metric for Support Vector Machine: A Multiple Kernel Learning Approach

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Recent work in distance metric learning has significantly improved the performance in k-nearest neighbor classification. However, the learned metric with these methods cannot adapt to the support vector machines (SVM), which are amongst the most popular classification algorithms using distance metrics to compare samples. In order to investigate the possibility to develop a novel model for joint learning distance metric and kernel classifier, in this paper, we provide a new parameterization scheme for incorporating the squared Mahalanobis distance into the Gaussian RBF kernel, and formulate kernel learning into a generalized multiple kernel learning framework, gearing towards SVM classification. We demonstrate the effectiveness of the proposed algorithm on the UCI machine learning datasets of varying sizes and difficulties and two real-world datasets. Experimental results show that the proposed model achieves competitive classification accuracies and comparable execution time by using spectral projected gradient descent optimizer compared with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www-i6.informatik.rwth-aachen.de/~keysers/usps.html.

  2. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

  3. http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

  4. http://www.cse.wustl.edu/~xuzx/research/code/code.html.

  5. http://research.microsoft.com/en-us/um/people/manik/code/GMKL/download.html.

  6. http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html.

  7. http://doc.ml.tu-berlin.de/nonsparse_mkl/.

  8. https://sites.google.com/site/xinxingxu666/.

  9. https://github.com/IvanoLauriola/MKLpy.

References

  1. Aiolli F, Donini M (2015) Easymkl: a scalable multiple kernel learning algorithm. Neurocomputing 169:215–224

    Article  Google Scholar 

  2. Bach FR (2009) Exploring large feature spaces with hierarchical multiple kernel learning. In: Advances in neural information processing systems, pp 105–112

  3. Bach FR, Lanckriet GR, Jordan MI (2004) Multiple kernel learning, conic duality, and the smo algorithm. In: Proceedings of the twenty-first international conference on Machine learning, ACM, p 6

  4. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification. In: IEEE Conference on computer vision and pattern recognition, 2008. CVPR 2008, pp 1–8

  5. Cao Q, Ying Y, Li P (2013) Similarity metric learning for face recognition. In: IEEE international conference on computer vision, pp 2408–2415

  6. Cortes C, Mohri M, Rostamizadeh A (2009) Learning non-linear combinations of kernels. In: Advances in neural information processing systems, pp 396–404

  7. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: Machine learning, proceedings of the twenty-fourth international conference, pp 209–216

  8. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(1):1–30

    MathSciNet  MATH  Google Scholar 

  9. Deng C, Tang X, Yan J, Liu W, Gao X (2016) Discriminative dictionary learning with common label alignment for cross-modal retrieval. IEEE Trans Multimed 18(2):208–218

    Article  Google Scholar 

  10. Deng C, Chen Z, Liu X, Gao X, Tao D (2018) Triplet-based deep hashing network for cross-modal retrieval. IEEE Trans Image Process 27(8):3893–3903

    Article  MathSciNet  MATH  Google Scholar 

  11. Do H, Kalousis A (2013) Convex formulations of radius-margin based support vector machines. In: Proceedings of the 30th international conference on Machine learning, pp 169–177

  12. Do H, Kalousis A, Wang J, Woznica A (2012) A metric learning perspective of SVM: on the relation of SVM and LMNN. Eprint Arxiv pp 308–317

  13. Dong Y, Du B, Zhang L, Zhang L, Tao D (2017) Lam3l: locally adaptive maximum margin metric learning for visual data classification. Neurocomputing 235:1–9

    Article  Google Scholar 

  14. Frank A, Asuncion A (2010) Uci machine learning repository [http://archive.ics.uci.edu/ml]. irvine, ca: University of california. School of Information and Computer Science 213

  15. Gai K, Chen G, Zhang C (2010) Learning kernels with radiuses of minimum enclosing balls. In: Advances in neural information processing systems, pp 649–657

  16. Gao X, Hoi SCH, Zhang Y, Wan J, Li J (2014) Soml: sparse online metric learning with application to image retrieval. In: Twenty-eighth AAAI conference on artificial intelligence, pp 1206–1212

  17. Goldberger J, Roweis ST, Hinton GE, Salakhutdinov R (2004) Neighbourhood components analysis. Adv Neural Inf Process Syst 83(6):513–520

    Google Scholar 

  18. Gu Y, Wang C, You D, Zhang Y, Wang S, Zhang Y (2012) Representative multiple kernel learning for classification in hyperspectral imagery. Neurocomputing 50:215–224

    Google Scholar 

  19. Guillaumin M, Verbeek J, Schmid C (2009) Is that you? Metric learning approaches for face identification. In: 2009 IEEE 12th international conference on computer vision. IEEE, pp 498–505

  20. Hasan MA, Ahmad S, Molla MK (2017) Protein subcellular localization prediction using multiple kernel learning based support vector machine. Mol Biosyst 13(4):785

    Article  Google Scholar 

  21. Hoi SCH, Liu W, Lyu MR, Ma WY (2006) Learning distance metrics with contextual constraints for image retrieval. In: IEEE conference on computer vision and pattern recognition, pp 2072–2078

  22. Jain A, Vishwanathan SVN, Varma M (2012) Spg-gmkl: generalized multiple kernel learning with a million kernels. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 750–758

  23. Kedem D, Tyree S, Weinberger KQ, Sha F, Lanckriet G (2012) Non-linear metric learning. In: Advances in neural information processing systems, pp 2573–2581

  24. Kloft M, Brefeld U, Sonnenburg S, Zien A (2011) Lp-norm multiple kernel learning. J Mach Learn Res 12:953–997

    MathSciNet  MATH  Google Scholar 

  25. Lanckriet GRG, Cristianini N, Bartlett P, El Ghaoui L, Jordan MI (2002) Learning the kernel matrix with semi-definite programming. J Mach Learn Res 5(1):323–330

    MATH  Google Scholar 

  26. Lauriola I, Polato M, Aiolli F (2017) Radius-margin ratio optimization for dot-product Boolean kernel learning. In: International conference on artificial neural networks, pp 183–191

  27. Lim DKH, Mcfee B, Lanckriet G (2013) Robust structural metric learning. In: International conference on machine learning, pp 615–623

  28. Lu X, Wang Y, Zhou X, Ling Z (2015) A method for metric learning with multiple-kernel embedding. Neural Process Lett 43(3):923–924

    Article  Google Scholar 

  29. Mcfee B, Lanckriet G (2011) Learning multi-modal similarity. J Mach Learn Res 12(8):491–523

    MathSciNet  MATH  Google Scholar 

  30. Nguyen B, Morell C, De Baets B (2016) Large-scale distance metric learning for k-nearest neighbors regression. Neurocomputing 214:805–814

    Article  Google Scholar 

  31. Nguyen N, Guo Y (2008) Metric learning: a support vector approach. In: Joint European conference on machine learning and knowledge discovery in databases, Springer, pp 125–136

  32. Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) Simplemkl. J Mach Learn Res 9(11):2491–2521

    MathSciNet  MATH  Google Scholar 

  33. Schölkopf B, Smola A (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  34. Shawe-Taylor J, Cristianini N (2006) Kernel methods for pattern analysis. J Am Stat Assoc 101(12):1730–1730

    Google Scholar 

  35. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7(7):1531–1565

    MathSciNet  MATH  Google Scholar 

  36. Squarcina L, Castellani U, Bellani M, Perlini C, Lasalvia A, Dusi N, Bonetto C, Cristofalo D, Tosato S, Rambaldelli G (2017) Classification of first-episode psychosis in a large cohort of patients using support vector machine and multiple kernel learning techniques. Neuroimage 145:238–245

    Article  Google Scholar 

  37. Torresani L, Kc L (2007) Large margin component analysis. Adv Neural Inf Process Syst 19:1385

    Google Scholar 

  38. Tran D, Sorokin A (2008) Human activity recognition with metric learning. In: European conference on computer vision, pp 548–561

    Google Scholar 

  39. Vapnik V, Chapelle O (2000) Bounds on error expectation for support vector machines. Neural Comput 12(9):2013–2036

    Article  Google Scholar 

  40. Varma M, Babu BR (2009) More generality in efficient multiple kernel learning. In: International conference on machine learning, pp 1065–1072

  41. Wang F, Zuo W, Zhang L, Meng D, Zhang D (2015) A kernel classification framework for metric learning. IEEE Trans Neural Netw Learn Syst 26(9):1950–1962

    Article  MathSciNet  Google Scholar 

  42. Wang J, Do HT, Woznica A, Kalousis A (2011) Metric learning with multiple kernels. In: Advances in neural information processing systems, pp 1170–1178

  43. Wang J, Deng Z, Choi KS, Jiang Y, Luo X, Chung FL, Wang S (2016) Distance metric learning for soft subspace clustering in composite kernel space. Pattern Recognit 52:113–134

    Article  MATH  Google Scholar 

  44. Weinberger KQ, Saul LK (2006) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(1):207–244

    MATH  Google Scholar 

  45. Wu H, He L (2015) Combining visual and textual features for medical image modality classification with lp-norm multiple kernel learning. Neurocomputing 147(1):387–394

    Article  Google Scholar 

  46. Xu X, Tsang IW, Xu D (2013) Soft margin multiple kernel learning. IEEE Trans Neural Netw Learn Syst 24(5):749–761

    Article  Google Scholar 

  47. Xu Z, Jin R, King I, Lyu M (2009) An extended level method for efficient multiple kernel learning. In: Advances in neural information processing systems, pp 1825–1832

  48. Xu Z, Weinberger KQ, Chapelle O (2012) Distance metric learning for kernel machines. arXiv preprint arXiv:1208.3422

  49. Yang E, Deng C, Li C, Liu W, Li J, Tao D (2018) Shared predictive cross-modal deep quantization. IEEE Trans Neural Netw Learn Syst 99:1–12

    Google Scholar 

  50. Yi S, Jiang N, Wang X, Liu W (2016) Individual adaptive metric learning for visual tracking. Neurocomputing 191:273–285

    Article  Google Scholar 

  51. Ying Y, Li P (2012) Distance metric learning with eigenvalue optimization. J Mach Learn Res 13(1):1–26

    MathSciNet  MATH  Google Scholar 

  52. Zhang X, Mahoor MH, Mavadati SM (2015) Facial expression recognition using lp-norm MKL multiclass-SVM. Mach Vis Appl 26(4):467–483

    Article  Google Scholar 

  53. Zhao C, Chen Y, Wei Z, Miao D, Gu X (2018) Qrkiss: a two-stage metric learning via QR-decomposition and kiss for person re-identification. Neural Process Lett 2:1–24

    Google Scholar 

Download references

Acknowledgements

This work is partly support by the National Science Foundation of China (NSFC) Project under the Contract Nos. 61671182, 61102037, 61471146 and 61871381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zifei Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yan, Z., Xiao, G. et al. Learning Distance Metric for Support Vector Machine: A Multiple Kernel Learning Approach. Neural Process Lett 50, 2899–2923 (2019). https://doi.org/10.1007/s11063-019-10053-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10053-5

Keywords

Navigation