Skip to main content

Advertisement

Log in

Distributed Neuro-Dynamic Algorithm for Price-Based Game in Energy Consumption System

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a plug-in hybrid electric vehicles energy consumption system is studied. In order to protect each player’s privacy, the information exchange is going on the neighboring players, and a connected undirected graph is used to pattern the information flow between the players. Hence, it is impossible for each player to access the aggregate electricity consumption directly, which determines the electricity price. Under the noncooperative game frame, a distributed neuro-dynamic algorithm is proposed to optimize the benefit of each individual player base on the pricing strategies. A dynamic average consensus is applied to estimate the aggregate consumption and a projection neural network is employed to seek the Nash equilibrium point. The convergence of the proposed distributed algorithm is analyzed through the Lyapunov stability analysis. Finally, the effectiveness of the distributed neuro-dynamic algorithm is manifested in the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martinez CM, Hu X, Cao D (2017) Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans Veh Technol 66(6):4534–4549

    Article  Google Scholar 

  2. He X, Yu JZ, Huang TW, Li CJ (2018) Distributed power management for dynamic economic dispatch in the multi-micro-grids environment. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2018.2816902

    Article  Google Scholar 

  3. Li C, Liu C, Deng K et al (2017) Data-driven charging strategy of PEVs under transformer aging risk. IEEE Trans Control Syst Technol 26(4):1386–1399

    Article  Google Scholar 

  4. Humayd ASB, Bhattacharya K (2017) Distribution system planning to accommodate distributed energy resources and PEVs. Electr Power Syst Res 145:1–11

    Article  Google Scholar 

  5. Hashemi-Dezaki H, Askarian-Abyaneh H, Shams-Ansari A et al (2017) Direct cyber-power interdependencies-based reliability evaluation of smart grids including wind/solar/diesel distributed generations and plug-in hybrid electrical vehicles. Int J Electr Power Energy Syst 93:1–14

    Article  Google Scholar 

  6. Wu X, Hu X, Yin X et al (2016) Stochastic optimal energy management of smart home with PEV energy storage. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2606442

    Article  Google Scholar 

  7. Yang C, Jiao X, Li L et al (2015) Robust coordinated control for hybrid electric bus with single-shaft parallel hybrid powertrain. IET Control Theory Appl 9(2):270–282

    Article  Google Scholar 

  8. Omran NG, Filizadeh S (2017) A semi-cooperative decentralized scheduling scheme for plug-in electric vehicle charging demand. Int J Electr Power Energy Syst 88:119–132

    Article  Google Scholar 

  9. Honarmand M, Zakariazadeh A, Jadid S (2015) Self-scheduling of electric vehicles in an intelligent parking lot using stochastic optimization. J Frankl Inst 352(2):449–467

    Article  Google Scholar 

  10. Yang C, Liang L, You S, Yan B, Du X (2017) Cloud computing-based energy optimization control framework for plug-in hybrid electric bus. Energy 125:11–26

    Article  Google Scholar 

  11. Liang L, Yang C et al (2015) Correctional DP-based energy management strategy of plug-in hybrid electric bus for city-bus route. IEEE Trans Veh Technol 64(7):2792–2803

    Article  Google Scholar 

  12. Facchinei F, Kanzow C (2010) Generalized Nash equilibrium problems. Ann Oper Res 175(1):177–211

    Article  MathSciNet  Google Scholar 

  13. Li CJ, Xu Y, Yu XH, Ryan C, Huang TW (2017) Risk-averse energy trading in multienergy microgrids: a two-stage stochastic game approach. IEEE Trans Ind Inform 13(5):2620–2630

    Article  Google Scholar 

  14. Anees A, Chen YP (2016) True real time pricing and combined power scheduling of electric appliances in residential energy management system. Appl Energy 165(1):592–600

    Article  Google Scholar 

  15. Marzband M, Javadi M, Pourmousavi SA et al (2018) An advanced retail electricity market for active distribution systems and home microgrid interoperability based on game theory. Electr Power Syst Res 157:187–199

    Article  Google Scholar 

  16. Zhao T, Ding Z (2017) Distributed initialization-free cost-optimal charging control of plug-in electric vehicles for demand management. IEEE Trans Ind Inform 13(6):2791–2801

    Article  Google Scholar 

  17. Li J, Li C, Xu Y et al (2016) Noncooperative game-based distributed charging control for plug-in electric vehicles in distribution networks. IEEE Trans Ind Inform 14(1):301–310

    Article  Google Scholar 

  18. Couillet R, Perlaza SM, Tembine H et al (2012) Electrical vehicles in the smart grid: a mean field game analysis. IEEE J Sel Areas Commun 30(6):1086–1096

    Article  Google Scholar 

  19. Nguyen HK, Song JB (2012) Optimal charging and discharging for multiple PHEVs with demand side management in vehicle-to-building. J Commun Netw 14(6):662–671

    Article  Google Scholar 

  20. Ye M, Hu G (2017) Game design and analysis for price-based demand response: an aggregate game approach. IEEE Trans Cybern 47(3):720–730

    Article  Google Scholar 

  21. Shapley LS (1971) Cores of convex games. Int J Game Theory 1(1):11–26

    Article  MathSciNet  Google Scholar 

  22. Nikaid H, Isoda K (1955) Note on non-cooperative convex game. Pac J Math 5(5):807–815

    Article  MathSciNet  Google Scholar 

  23. Gharesifard B, Basar T, Domłnguez-Garcła AD (2016) Price-based coordinated aggregation of networked distributed energy resources. IEEE Trans Autom Control 61(10):2936–2946

    Article  MathSciNet  Google Scholar 

  24. Frihauf P, Krstic M, Basar T (2012) Nash equilibrium seeking in noncooperative games. IEEE Trans Autom Control 57(5):1192–1207

    Article  MathSciNet  Google Scholar 

  25. Yi P, Hong Y, Liu F (2015) Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Syst Control Lett 83:45–52

    Article  MathSciNet  Google Scholar 

  26. Xia Y, Leung H, Wang J (2002) A projection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I Fundam Theory Appl 49(4):447–458

    Article  MathSciNet  Google Scholar 

  27. Cheng L, Hou ZG, Tan MA (2009) delayed projection neural network for solving linear variational inequalities. IEEE Trans Neural Netw 20(6):915–925

    Article  Google Scholar 

  28. Qiu Z, Liu S, Xie L (2016) Distributed constrained optimal consensus of multi-agent systems. Automatica 68:209–215

    Article  MathSciNet  Google Scholar 

  29. Kia SS, Corts J, Martłnez S (2015) Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55:254–264

    Article  MathSciNet  Google Scholar 

  30. Le X, Chen S, Yan Z, Ping J, Zhao X, Zhang N, Xi J (2018) Enabling a transactive distribution system via real-time distributed optimization. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG

    Article  Google Scholar 

  31. Li C, Yu X, Huang T et al (2017) Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2017.2691760

    Article  Google Scholar 

  32. Zeng X, Yi P, Hong Y (2017) Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans Autom Control 62(10):5227–5233

    Article  MathSciNet  Google Scholar 

  33. Cheng L, Hou ZG, Tan MA (2008) neutral-type delayed projection neural network for solving nonlinear variational inequalities. IEEE Trans Circuits Syst II Express Briefs 55(8):806–810

    Article  Google Scholar 

  34. He X, Zhao Y, Huang TW (2018) Optimizing the dynamic economic dispatch problem by the distributed consensus-based ADMM approach. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2019.2908450

    Article  Google Scholar 

  35. Monderer D, Shapley LS (1996) Potential games. Games Econ Behav 14(1):124–143

    Article  MathSciNet  Google Scholar 

  36. Simpson A (2006) Cost-benefit analysis of plug-in hybrid electric vehicle technology. National Renewable Energy Laboratory, Golden

    Google Scholar 

  37. Le X, Chen S, Li F, Yan Z, Xi J (2019) Distributed neurodynamic optimization for energy Internet management. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2898551

    Article  Google Scholar 

  38. Horn RA, Johnson CR (1990) Matrix analysis. Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  39. Le X, Chen S, Yan Z, Xi J (2017) A neurodynamic approach to distributed optimization with globally coupled constraints. IEEE Trans Cybern 48(11):3149–3158

    Article  Google Scholar 

  40. Kinderlehrer D, Stampacchia G (2000) An introduction to variational inequalities and their applications. Society for Industrial and Applied Mathematics, Philadelphia

    Book  Google Scholar 

  41. Rosen JB (1965) Existence and uniqueness of equilibrium points for concave n-person games. Econom J Econom Soc 33(3):520–534

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities (Project No. XDJK2019B010), and also supported by Natural Science Foundation of China (Grant No: 61773320), and also supported by the Natural Science Foundation Project of Chongqing CSTC (Grant No. cstc2018jcyjAX0583). This publication was made possible by NPRP Grant No. NPRP 7-1482-1-278 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. Proof of Lemma 1

Proof

From [24], we recall that \(C_i\) is continuous and quasiconvex with respect to \(\varOmega _i\), there exists an insular and stable Nash equilibrium \(x^*=\left( x_{1}^{*},x_{2}^{*},\ldots ,x_{n}^{*} \right) ^T\), for all \(\,\,i\in {\mathbb {N}}\), such that there are

$$\begin{aligned} \frac{\partial C_i}{\partial x_i}\left( x^* \right) =0,\ \frac{\partial ^2C_i}{\partial x_{i}^{2}}\left( x^* \right) >0. \end{aligned}$$
(16)

and the matrix

$$\begin{aligned} B=\left[ \begin{array}{cccc} \frac{\partial ^2C_1}{\partial x_{1}^{2}}\left( x^* \right) &{} \frac{\partial ^2C_1}{\partial x_1\partial x_2}\left( x^* \right) &{} \cdots &{} \frac{\partial ^2C_1}{\partial x_1\partial x_N}\left( x^* \right) \\ \frac{\partial ^2C_2}{\partial x_1\partial x_2}\left( x^* \right) &{} \frac{\partial ^2C_2}{\partial x_{2}^{2}}\left( x^* \right) &{} \cdots &{} \frac{\partial ^2C_2}{\partial x_2\partial x_N}\left( x^* \right) \\ \vdots &{} \vdots &{} \ddots &{} \vdots \\ \frac{\partial ^2C_N}{\partial x_1\partial x_N}\left( x^* \right) &{} \frac{\partial ^2C_N}{\partial x_2\partial x_N}\left( x^* \right) &{} \cdots &{} \frac{\partial ^2C_N}{\partial x_{N}^{2}}\left( x^* \right) \\ \end{array} \right] \end{aligned}$$

is strictly diagonally dominant. In this paper, the strategy set \(\varOmega _i=\left\{ x_i|x_{i}^{\min }\le x_i\le x_{i}^{\max },\right. \left. \forall i\in {\mathbb {N}} \right\} \) satisfies the conditions in the Lemma 1, and the matrix B is strictly diagonally dominant,and hence, nonsingular, i.e., \(a<\underset{i\in {\mathbb {N}}}{\min }\frac{hy_i}{\left( N-3 \right) \left( x_{i}^{\max } \right) ^2}\) for \(\ N>3\), B is positive definite by the Gershgorin circle theorem [37, 38], such that \(C_i:\varOmega \rightarrow R\) is continuous and \(\forall x_{-i}\in \varOmega _{-i},z_i\rightarrow C_i\left( z_i,x_{-i} \right) \) is strictly convex with respect to \(\varOmega _i\) for problem 1, the inequation (16) is also satisfied at the Nash equilibrium. Therefore, the uniqueness Nash equilibrium \(x^*\) exists.

1.2 B. Proof of Lemma 2

Proof

Let \(G=\left[ {\hat{G}},\alpha \right] \in R^{n\times n}\) be an orthonormal matrix and \(\alpha ^TL=0\), \(\alpha \in R^n\). Additionally, \(v=G\left[ \begin{array}{c} {\hat{v}}\\ v_{\alpha }\\ \end{array} \right] \), \({\hat{v}}\in R^{n-1}\). (10) can be written as

$$\begin{aligned}&\left[ \begin{array}{c} {{\dot{X}}}\\ {\dot{{\hat{v}}}}\\ {\dot{v_{\alpha }}}\\ \end{array} \right] =\left[ \begin{matrix} -I-L&{} -L{\hat{G}}&{} 0_{n\times 1}\\ {\hat{G}}^TL&{} 0_{n-1\times n-1}&{} 0_{n-1\times 1}\\ 0_{1\times n}&{} 0_{1\times n-1}&{} 0\\ \end{matrix} \right] \left[ \begin{array}{c} X\\ {\hat{v}}\\ v_{\alpha }\\ \end{array} \right] +\left[ \begin{array}{c} Nx\\ 0_{n-1\times 1}\\ 0\\ \end{array} \right] \end{aligned}$$
(17a)
$$\begin{aligned}&{{\dot{x}}}=-\sigma {\hat{l}}\left( \left[ x_i-P_{\varOmega _i}\left( x_i-\left( \frac{\partial C_{G,i}}{\partial x_i}+p\left( X_i \right) +x_i\frac{\partial p\left( X_i \right) }{\partial X_i} \right) \right) \right] _{vec} \right) \end{aligned}$$
(17b)

the Eq. (17a) indicate \(v_{\alpha }\left( t \right) =v\left( 0 \right) \).

Supposing the quasisteady states of X, \({\hat{v}}\) are \(X^q\) and \({\hat{v}}^q\) respectively, therefore, there is

$$\begin{aligned} \left[ \begin{array}{c} {{\dot{X}}^q}\\ {\dot{{\hat{v}}}^q}\\ \end{array} \right] =0 \end{aligned}$$
(18)

for fixed x. Meanwhile, the \(\left[ \begin{matrix} -I-L&{} -L{\hat{G}}\\ {\hat{G}}^TL&{} 0_{n-1\times n-1}\\ \end{matrix} \right] \) is Hurwitz [39], \(X^q\) and \({\hat{v}}^q\) will be unique values. We can also obtain that

$$\begin{aligned} \left[ \begin{array}{c} {\dot{X^q}}\\ {{\dot{v}}^q}\\ \end{array} \right] =0 \end{aligned}$$
(19)

which reveals \(X^q\) is the equilibrium of (10a). Based on the dynamic average consensus in Sect. 2.4, it is distinct to receive \(X^q=1_N\sum _{i=1}^N{x_i}\) for the fixed x.

Define \(\tau =\sigma t\) such that (17) can be written as (20) in the \(\tau \) time scale.

$$\begin{aligned}&\left[ \begin{array}{c} \sigma \frac{dX}{d\tau }\\ \sigma \frac{d{\hat{v}}}{d\tau }\\ \end{array} \right] =\left[ \begin{matrix} -I-L&{} -L{\hat{G}}\\ {\hat{G}}^TL&{} 0_{n-1\times n-1}\\ \end{matrix} \right] \left[ \begin{array}{c} X\\ {\hat{v}}\\ \end{array} \right] +\left[ \begin{array}{c} Nx\\ 0_{n-1\times 1}\\ \end{array} \right] \end{aligned}$$
(20a)
$$\begin{aligned}&{{\dot{x}}}=-\sigma {\hat{l}}\left( \left[ x_i-P_{\varOmega _i}\left( x_i-\left( \frac{\partial C_{G,i}}{\partial x_i}+p\left( X_i \right) +x_i\frac{\partial p\left( X_i \right) }{\partial X_i} \right) \right) \right] _{vec} \right) \end{aligned}$$
(20b)

Let \(\sigma =0\), X and \({\hat{v}}\) will stay at the quasisteady state which indicates \(X=\left( \sum _{i=1}^N{x_i} \right) 1_N\) and (20b) will be transformed into (21).

$$\begin{aligned} \begin{aligned} \frac{dx}{d\tau }=&-{\hat{l}}\left( \left[ x_i-P_{\varOmega _i}\left( x_i-\left( \frac{\partial C_{G,i}}{\partial x_i}+p\left( X_i \right) +x_i\frac{\partial p\left( X_i \right) }{\partial X_i} \right) \right) \right] _{vec} \right) \\&=-\,{\hat{l}}\left( \left[ x_i-P_{\varOmega _i}\left( x_i-\frac{\partial C_i\left( x_i,x_{-i} \right) }{\partial x_i} \right) \right] _{vec} \right) \end{aligned} \end{aligned}$$
(21)

According to Lemma 1, there exists the Nash equilibrium point \(x^*\) and \(\frac{\partial C_i}{\partial x_i}\left( x^* \right) =0\) such that \(P_{\varOmega _i}\left( x^*_i-\frac{\partial C_i\left( x^* \right) }{\partial x_i} \right) =x_{i}^{*}\), then

$$\begin{aligned}&\left[ \begin{matrix} -I-L&{} -L\\ L&{} 0_n\\ \end{matrix} \right] \left[ \begin{array}{c} X\left( x^* \right) \\ v^*\\ \end{array} \right] +\left[ \begin{array}{c} Nx^*\\ 0_n\\ \end{array} \right] =0 \end{aligned}$$
(22a)
$$\begin{aligned}&\left[ x_{i}^{*}-P_{\varOmega _i}\left( x_{i}^{*}-\frac{\partial C_i\left( x_{i}^{*},x_{-i}^{*} \right) }{\partial x_i} \right) \right] _{vec}=0 \end{aligned}$$
(22b)

\(x^*\) is the equilibrium point of Problem 2. In [20], \(X\left( x \right) \), \({\hat{v}}\left( x \right) \) are bounded since \(\left[ \begin{matrix} -I-L&{} -L{\hat{G}}\\ {\hat{G}}^TL&{} 0_{n-1\times n-1}\\ \end{matrix} \right] \) is nonsingular, hence, \(x\left( t \right) \) converges to the Nash equilibrium for the Problem 2. \(\square \)

1.3 C. Proof of Theorem 1

Proof

Let \(H:\ \varOmega \subset R^n\rightarrow R^n\) be differentiable with respect to \(\varOmega \), and defining a function \(s:\ R^n\rightarrow R\) as fowllows

$$\begin{aligned} s\left( x \right) =\int _0^1{\left( x-x_0 \right) }^TH\left( x_0+t\left( x-x_0 \right) \right) dt \end{aligned}$$
(23)

where \(\nabla H\) is symmetric with respect to \(\varOmega \) and \(\nabla s\left( x \right) ^T=H\left( x \right) \) [26].

For all \(g\in R^m\) and all \(u\in \varOmega \) [40], there is

$$\begin{aligned} \left( g-P_{\varOmega }\left( g \right) \right) ^T\left( P_{\varOmega }\left( g \right) -u \right) \ge 0 \end{aligned}$$
(24)

Let \(g=x-H\left( x \right) \) and \(u=x\), then

$$\begin{aligned} \left( x-H\left( x \right) -P_{\varOmega }\left( x-H\left( x \right) \right) \right) ^T\left( P_{\varOmega }\left( x-H\left( x \right) \right) -x \right) \ge 0 \end{aligned}$$
(25)

i.e.,

$$\begin{aligned} H\left( x \right) ^T\left\{ P_{\varOmega }\left( x-H\left( x \right) \right) -x \right\} \le -||\left( P_{\varOmega }\left( x-H\left( x \right) \right) -x \right) ||^2 \end{aligned}$$
(26)

Define the Lyapunov function below

$$\begin{aligned} V\left( x \right) =\int _0^1{\left( x-x^* \right) }^TH\left( x^*+\rho \left( x-x^* \right) \right) d\rho \end{aligned}$$
(27)

let \(H\left( x \right) =\nabla {\mathcal {F}}\left( x \right) \), then \(x^*\in \varOmega ^*\) since \(\nabla H\) is symmetric and positive define, with the definition of potential game, then

$$\begin{aligned} \frac{dV\left( x \right) }{dt}= & {} \left( \frac{dV}{dx} \right) ^T\frac{dx}{dt} \nonumber \\= & {} H\left( x \right) ^T\left\{ -{\hat{l}}\left( \left[ x_i-P_{\varOmega _i}\left( x_i-\frac{\partial C_i\left( x_i,x_{-i} \right) }{\partial x_i} \right) \right] _{vec} \right) \right\} \nonumber \\= & {} -\,{\hat{l}}H\left( x \right) ^T\left( x-P_{\varOmega }\left( x-H\left( x \right) \right) \right) \nonumber \\\le & {} -\,{\hat{l}}||\left( P_{\varOmega }\left( x-H\left( x \right) \right) -x \right) ||^2\le 0 \end{aligned}$$
(28)

when the equality holds only if \(P_{\varOmega }\left( x-H\left( x \right) \right) -x=0\), i.e., \(\frac{dx}{dt}=0\), meanwhile, B is strictly diagonally dominant such that the potential function \({\mathcal {F}}\left( x \right) \) is strictly convex in x. According the diagonally strict convexity, a uniqueness Nash equilibrium point \(x^*\) can also be obtained [41], then, the system is globally asymptotically stable. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., He, X. & Huang, T. Distributed Neuro-Dynamic Algorithm for Price-Based Game in Energy Consumption System. Neural Process Lett 51, 559–575 (2020). https://doi.org/10.1007/s11063-019-10102-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10102-z

Keywords

Navigation