Skip to main content
Log in

Electrical Resistivity Inversion Based on a Hybrid CCSFLA-MSVR Method

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

2D electrical resistivity inversion is a complicated nonlinear optimization problem, which is high-dimensional and non-convex. Using traditional neural networks to solve resistivity inversion problem is cost effective but suffers from trapping in local minima. In order to solve the above problem, a multi-output support vector regression (MSVR) nonlinear inversion method with limited ERI learning samples is researched in this paper, which considers the combined fitting errors of all outputs. Moreover, a Cauchy random and chaotic oscillation shuffled frog leaping algorithm is applied to optimize the RBF kernel widths and penalty coefficients of MSVR for improving the inversion accuracy and the computational efficiency. The key issues of data sets generation, data preprocessing and inversion flowchart are analyzed. The experimental results based on the synthetic and field examples demonstrated that the proposed algorithm is accurate, efficient and can be applied in practical engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lesur V, Cuer M, Straub A (1999) 2-D and 3-D interpretation of electrical tomography measurements, Part 2: the inverse problem. Geophysics 64(2):396–402

    Article  Google Scholar 

  2. Loke M, Barker R (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60(6):1682–1690

    Article  Google Scholar 

  3. Loke MH, Barker R (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44(1):131–152

    Article  Google Scholar 

  4. Liu B, Li SC, Nie LC, Wang J, Zhang QS (2012) 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction. J Appl Geophys 87:1–8

    Article  Google Scholar 

  5. Schwarzbach C, Börner R-U, Spitzer K (2005) Two-dimensional inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm. Geophys J Int 162(3):685–695

    Article  Google Scholar 

  6. Fernández Martínez JL, García Gonzalo E, Fernández Álvarez JP, Kuzma HA, Menéndez Pérez CO (2010) PSO: a powerful algorithm to solve geophysical inverse problems. J Appl Geophys 71(1):13–25

    Article  Google Scholar 

  7. Shaw R, Srivastava S (2007) Particle swarm optimization: a new tool to invert geophysical data. Geophysics 72(2):F75–F83

    Article  Google Scholar 

  8. Sharma SP (2012) VFSARES—a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays. Comput Geosci 42:177–188

    Article  Google Scholar 

  9. Pidlisecky A, Knight R (2008) FW2_5D: A MATLAB 2.5-D electrical resistivity modeling code. Comput Geosci 34(12):1645–1654

    Article  Google Scholar 

  10. Raj AS, Srinivas Y, Oliver DH, Muthuraj D (2014) A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN). J Earth Syst Sci 123(2):395–411

    Article  Google Scholar 

  11. Neyamadpour A, Abdullah WW, Taib S (2010) Inversion of quasi-3D DC resistivity imaging data using artificial neural networks. J Earth Syst Sci 119(1):27–40

    Article  Google Scholar 

  12. Maiti S, Erram VC, Gupta G, Tiwari RK (2012) ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). J Hydrol 464–465:294–308

    Article  Google Scholar 

  13. Jiang F-B, Dai Q-W, Dong L (2016) An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging. J Centr South Univ 23(8):2129–2138

    Article  Google Scholar 

  14. Srinivas Y, Raj AS, Oliver DH, Muthuraj D, Chandrasekar N (2012) A robust behavior of feed forward back propagation algorithm of artificial neural networks in the application of vertical electrical sounding data inversion. Geosci Front 3(5):729–736

    Article  Google Scholar 

  15. Raj AS, Oliver DH, Srinivas Y (2015) An automatic inversion tool for geoelectrical resistivity data using supervised learning algorithm of adaptive neuro fuzzy inference system (ANFIS). Model Earth Syst Environ 1(1–2):1–13

    Google Scholar 

  16. Al-Abri M, Hilal N (2008) Artificial neural network simulation of combined humic substance coagulation and membrane filtration. Chem Eng J 141(1):27–34

    Article  Google Scholar 

  17. Bi XA, Liu Y, Xie Y, Hu X, Jiang Q (2020) Morbigenous brain region and gene detection with a genetically evolved random neural network cluster approach in late mild cognitive impairment. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz967

    Article  Google Scholar 

  18. Dai Y, Wang G (2018) A deep inference learning framework for healthcare. Pattern Recognit Lett. https://doi.org/10.1016/j.patrec.2018.02.009

    Article  Google Scholar 

  19. Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  Google Scholar 

  20. Deng X, Yang D, Peng J, Guan X, Yang B (2010) Noise reduction and drift removal using least-squares support vector regression with the implicit bias term. Geophysics 75(6):V119–V127

    Article  Google Scholar 

  21. Beran L, Billings S, Oldenburg D (2012) Regularizing dipole polarizabilities in time-domain electromagnetic inversion. J Appl Geophys 85:59–67

    Article  Google Scholar 

  22. Cracknell MJ, Reading AM (2013) The upside of uncertainty: identification of lithology contact zones from airborne geophysics and satellite data using random forests and support vector machines. Geophysics 78(3):WB113–WB126

    Article  Google Scholar 

  23. Li G, You J, Liu X (2015) Support Vector Machine (SVM) based prestack AVO inversion and its applications. J Appl Geophys 120:60–68

    Article  Google Scholar 

  24. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging method. J Appl Geophys 95:135–156

    Article  Google Scholar 

  25. Jiang F, Dong L, Dai Q, Nobes DC (2018) Using wavelet packet denoising and ANFIS networks based on COSFLA optimization for electrical resistivity imaging inversion. Fuzzy Sets Syst 337:93–112

    Article  MathSciNet  Google Scholar 

  26. Shevade SK, Keerthi SS, Bhattacharyya C, Murthy KRK (2000) Improvements to the SMO algorithm for SVM regression. IEEE Trans Neural Networks 11(5):1188–1193

    Article  Google Scholar 

  27. Han Z, Liu Y, Zhao J, Wang W (2012) Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Eng Pract 20(12):1400–1409

    Article  Google Scholar 

  28. Smola AJ, Schölkopf B (1998) Learning with kernels. University Park, Citeseer

    MATH  Google Scholar 

  29. Luo J-P, Li X, Chen M-R (2014) Hybrid shuffled frog leaping algorithm for energy-efficient dynamic consolidation of virtual machines in cloud data centers. Expert Syst Appl 41(13):5804–5816

    Article  Google Scholar 

  30. Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. Cybern IEEE Trans Syst Man Cybern Part B 42(2):482–500

    Article  Google Scholar 

  31. Jiang F, Wang K, Dong L, Pan C, Xu W, Yang K (2019) Deep learning based joint resource scheduling algorithms for hybrid MEC networks. IEEE Internet Things J

  32. May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261(5560):459–467

    Article  MATH  Google Scholar 

  33. Bi X-A, Hu X, Wu H, Wang Y (2020) Multimodal data analysis of Alzheimer’s disease based on clustering evolutionary random forest. IEEE J Biomed Health Inf

  34. Jiang F, Dong L, Dai Q (2018) Electrical resistivity imaging inversion: an ISFLA trained kernel principal component wavelet neural network approach. Neural Netw 104:114–123

    Article  Google Scholar 

  35. Neyamadpour A, Taib S, WanAbdullah WAT (2009) Using artificial neural networks to invert 2D DC resistivity imaging data for high resistivity contrast regions: a MATLAB application. Comput Geosci 35(11):2268–2274

    Article  Google Scholar 

  36. Ho TL (2009) 3-D inversion of borehole-to-surface electrical data using a back-propagation neural network. J Appl Geophys 68(4):489–499

    Article  Google Scholar 

  37. Maiti S, Tiwari RK (2010) Neural network modeling and an uncertainty analysis in Bayesian framework: a case study from the KTB borehole site. J Geophys Res Solid Earth 115:B10

    Article  Google Scholar 

  38. Maiti S, Erram VC, Gupta G, Tiwari RK (2012) ANN based inversion of DC resistivity data for groundwater exploration in hard rock terrain of western Maharashtra (India). J Hydrol 464:294–308

    Article  Google Scholar 

  39. Singh A, Maiti S, Tiwari RK (2017) Selection of optimum wavelet in CWT analysis of geophysical downhole data. J Ind Geophys Union 21(2):153–166

    Google Scholar 

  40. Cao L, Chua K, Chong W, Lee H, Gu Q (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1):321–336

    Google Scholar 

  41. Liu M, Liu X, Wu M, Li L, Xiu L (2011) Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Comput Geosci 37(10):1642–1652

    Article  Google Scholar 

  42. Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng Optim 38(2):129–154

    Article  MathSciNet  Google Scholar 

  43. Tang D, Yang J, Dong S, Liu Z (2016) A lévy flight-based shuffled frog-leaping algorithm and its applications for continuous optimization problems. Appl Soft Comput 49:641–662

    Article  Google Scholar 

  44. Yue-bo M, Jian-hua Z, Xu-sheng G, Liang Z (2012) Research on WNN aerodynamic modeling from flight data based on improved PSO algorithm. Neurocomputing 83:212–221

    Article  Google Scholar 

  45. Zhu G-Y, Zhang W-B (2014) An improved Shuffled Frog-leaping Algorithm to optimize component pick-and-place sequencing optimization problem. Expert Syst Appl 41(15):6818–6829

    Article  Google Scholar 

  46. Suykens JA, Van Gestel T, De Moor B, Vandewalle J (2002) Basic methods of least squares support vector machines. In: Least squares support vector machines. World Scientific

  47. Zhang X, Zhao J, Wang W, Cong L, Feng W (2011) An optimal method for prediction and adjustment on byproduct gas holder in steel industry. Expert Syst Appl 38(4):4588–4599

    Article  Google Scholar 

  48. Maiti S, Gupta G, Erram VC, Tiwari RK (2011) Inversion of Schlumberger resistivity sounding data from the critically dynamic Koyna region using the Hybrid Monte Carlo-based neural network approach. Nonlinear Process Geophys 18(2):179–192

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 41604117, 41904127, 41874148, 61701179), Hunan Provincial Science and Technology Program, China (Grant No. 2018TP1018), Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 18A031, 16B147), Changsha Civic Science and Technology Program, China (Grant No. kq1706048). We would like to thank the anonymous reviewers for their valuable comments that allowed us to highly improve the paper quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Dong, L. & Dai, Q. Electrical Resistivity Inversion Based on a Hybrid CCSFLA-MSVR Method. Neural Process Lett 51, 2871–2890 (2020). https://doi.org/10.1007/s11063-020-10229-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10229-4

Keywords

Navigation