Skip to main content
Log in

A New Robust Fuzzy Clustering Approach: DBKIFCM

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A clustering algorithm—Distance Based Gaussian Kernelized Intuitionistic Fuzzy C Means (DBKIFCM) is proposed. This algorithm is based on Gaussian kernel, outlier identification, and intuitionist fuzzy sets. It is intended to resolve the issue of presence of outliers, problem of sensitivity to initialization (STI) and is motivated by good performance of Radial Based Kernelized Intuitionistic Fuzzy C Means (KIFCM-RBF). Experiments are performed on standard 2D data sets such as Diamond (D12 and D15), and Dunn and real-world high dimension data sets such as Fisheriris, Wisconsin breast cancer, and Wine. DBKIFCM outcomes are studied in relation to Fuzzy C Means (FCM), Intuitionistic Fuzzy C Means (IFCM), KIFCM-RBF, Density Oriented Fuzzy C Means (DOFCM). It is observed that proposed approach significantly outperforms the earlier proposed algorithms with respect to outlier identification, effect of noise, issue of STI, and clustering error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaur P, Soni AK, Gosain A (2013) A robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images. Pattern Recognit Lett

  2. Han J, Kamber M, Pei J (2006) Data mining, Southeast Asia edition: concepts and techniques. Morgan Kaufmann, San Francisco

    MATH  Google Scholar 

  3. Rodríguez Ramos A, Rivera-Torres PJ, da Silva Neto AJ, Llanes-Santiago O (2018) A hybrid algorithm for fault diagnosis using fuzzy clustering tools. Fuzzy Optim Model J 1(1):11–30

    Google Scholar 

  4. Yu X (2014) Blurred trace infrared image segmentation based on template approach and immune factor. Infrared Phys Technol 67:116–120

    Article  Google Scholar 

  5. Yu X, Yuan X, Dong E, Ríha K (2016) Target extraction of banded blurred infrared images by immune dynamical algorithm with two-dimensional minimum distance immune field. Infrared Phys Technol 77:94–99

    Article  Google Scholar 

  6. Meenakshi S, Suganthi M, Sureshkumar P (2019) Segmentation and boundary detection of fetal kidney images in second and third trimesters using kernel-based fuzzy clustering. J Med Syst 43(7):203

    Article  Google Scholar 

  7. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  8. Dunn JC (1973) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3:32–57

    Article  MathSciNet  Google Scholar 

  9. Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  10. Kaur P, Gupta P, Sharma P (2012) Review and comparison of kernel based fuzzy image segmentation techniques. Int J Intell Syst Appl 4(7):50

    Google Scholar 

  11. Jain AK, Murty NM, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv (CSUR) 31(3):264–323

    Article  Google Scholar 

  12. Gosain A, Dahiya S (2016) Performance analysis of various fuzzy clustering algorithms: a review. Procedia Comput Sci 79:100–111

    Article  Google Scholar 

  13. Kim D-W, Lee KH, Lee D (2004) Fuzzy clustering of categorical data using fuzzy centroids. Pattern Recognit Lett 25(11):1263–1271

    Article  Google Scholar 

  14. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  15. Chintalapudi KK, Kam M (1998) The credibilistic fuzzy c means clustering algorithm. In: 1998 IEEE international conference on systems, man, and cybernetics, 1998, vol 2. IEEE, pp 2034–2039

  16. Kaur P, Soni AK, Gosain A (2013) Robust kernelized approach to clustering by incorporating new distance measure. Eng Appl Artif Intell 26(2):833–847

    Article  Google Scholar 

  17. Kaur P (2011) Robust intuitionistic fuzzy cmeans clustering for linearly and nonlinearly separable data. In: 2011 international conference on image information processing, 11/2011

  18. Xu Z, Junjie W (2010) Intuitionistic fuzzy C-means clustering algorithms. J Syst Eng Electron 21(4):580–590

    Article  Google Scholar 

  19. Guan S, Wang Y, Chen X (2018) An approach of single-crystal defect detection using x-ray orientation instrument. IEEE Trans Instrum Meas 68(10):4122–4134

    Article  Google Scholar 

  20. Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386–12396

    Article  Google Scholar 

  21. Debakla M, Salem M, Djemal K, Benmeriem K (2019) Fuzzy farthest point first method for MRI brain image clustering. IET Image Process 13(13):2395–2400

    Article  Google Scholar 

  22. Li L, Yang Z, Jiao L, Liu F, Liu X (2019) High-resolution SAR change detection based on ROI and SPP net. IEEE Access 7:177009–177022

    Article  Google Scholar 

  23. Chaira T (2011) A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl Soft Comput 11(2):1711–1717

    Article  Google Scholar 

  24. Kaur P, Soni AK, Gosain A (2013) RETRACTED: a robust kernelized intuitionistic fuzzy c-means clustering algorithm in segmentation of noisy medical images. Pattern Recognit Lett 34:163–175

    Article  Google Scholar 

  25. Tushir M, Srivastava S (2010) A new Kernelized hybrid c-mean clustering model with optimized parameters. Appl Soft Comput 10(2):381–389

    Article  Google Scholar 

  26. Kaur P, Gosain A (2011) A density oriented fuzzy C-means clustering algorithm for recognising original cluster shapes from noisy data. Int J Innov Comput Appl 3(2):77–87

    Article  Google Scholar 

  27. Kaur P, Gosain A (2010) Density-oriented approach to identify outliers and get noiseless clusters in fuzzy C-means. In: 2010 IEEE international conference on fuzzy systems (FUZZ). IEEE, pp 1–8

  28. Ramos AR, Llanes-Santiago O, Bernal de Lázaro JM, Corona CC, Silva Neto AJ, Verdegay Galdeano JL (2017) A novel fault diagnosis scheme applying fuzzy clustering algorithms. Appl Soft Comput 58:605–619

    Article  Google Scholar 

  29. Rodríguez-Ramos A, da Silva Neto AJ, Llanes-Santiago O (2019) A proposal of hybrid fuzzy clustering algorithm with application in condition monitoring of industrial processes. In: Uncertainty management with fuzzy and rough sets. Springer, Cham, pp 3–30

  30. Rodríguez-Ramos A, da SilvaNeto AJ, Llanes-Santiago O (2018) An approach to fault diagnosis with online detection of novel faults using fuzzy clustering tools. Expert Syst Appl 113:200–212

    Article  Google Scholar 

  31. Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, no. 34, pp 226–231

  32. Liu X, Zhu X, Li M, Wang L, Zhu E, Liu T, Kloft M, Shen D, Yin J, Gao W (2019) Multiple kernel k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42:1194–1204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonika Dahiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Distance Based Approach of Gaussian Kernelized Intuitionistic Fuzzy C Means

Appendix A: Distance Based Approach of Gaussian Kernelized Intuitionistic Fuzzy C Means

1.1 Proof of Distance-Based Approach of Gaussian Kernelized Intuitionistic Fuzzy C Means

Proof of DBKIFCM which is distance-based approach of KIFCM is given in this appendix. Minimization of Eq. (15), subjected to constraint in Eq. (23) is done by minimizing the following function:

$$ J_{DBKIFCM} = \sum\limits_{i = 1}^{nc + 1} {\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left\| {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right\|^{2} } } + \sum\limits_{i = 1}^{nc + 1} {\pi_{i}^{*} e^{{1 - \pi_{i}^{*} }} } + \sum\limits_{i = 1}^{nc + 1} {\lambda_{i} \left( {\sum\limits_{j = 1}^{n} {md_{ji}^{*} - 1} } \right)} $$
(29)

where λi (i = 1, 2, 3,…, nc) are Langrangian multipliers.

So, to solve this problem, we need to specify \( \left\| {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right\|^{2} \) as follows:

$$ \begin{aligned} \left\| {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right\|^{2} & = \left( {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right).\left( {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right) \\ & = \Phi \left( {d_{j} } \right).\Phi \left( {d_{j} } \right) - 2\Phi \left( {d_{j} } \right).\Phi \left( {C_{i} } \right) + \Phi \left( {C_{i} } \right).\Phi \left( {C_{i} } \right) \\ & = K\left( {d_{j} ,d_{j} } \right) - 2K\left( {d_{j} ,C_{i} } \right) + K\left( {C_{i} ,C_{i} } \right) \\ \end{aligned} $$

As in the proposed technique, we adopted Gaussian Kernel, that is:

$$ K(x,y) = \exp \left( { - \tfrac{{\sum {\left| {x_{i}^{a} - y_{i}^{a} } \right|^{b} } }}{{h^{2} }}} \right) $$
(30)

where h denotes kernel width, and a, b are data specific positive number, then K(x,x) = 1. Hence,

$$ \left\| {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right\|^{2} = 2\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right) $$
(31)

So, Eq. (26) modifies to:

$$ J_{DBKIFCM} = 2\sum\limits_{i = 1}^{nc + 1} {\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)} } + \sum\limits_{i = 1}^{nc + 1} {\pi_{i}^{*} e^{{1 - \pi_{i}^{*} }} } + \sum\limits_{i = 1}^{nc + 1} {\lambda_{i} \left( {\sum\limits_{j = 1}^{n} {md_{ji}^{*} - 1} } \right)} $$
(32)

Or

$$ J_{DBKIFCM} = 2\sum\limits_{i = 1}^{nc + 1} {\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {1 - \exp \left( { - \tfrac{{\sum {\left| {d_{j}^{a} - C_{i}^{a} } \right|^{b} } }}{{h^{2} }}} \right)} \right)} } + \sum\limits_{i = 1}^{nc + 1} {\pi_{i}^{*} e^{{1 - \pi_{i}^{*} }} } + \sum\limits_{i = 1}^{nc + 1} {\lambda_{i} \left( {\sum\limits_{j = 1}^{n} {md_{ji}^{*} - 1} } \right)} $$
(33)

1.1.1 Partial Derivative of JDBKIFCM (Given in Eq. (30)) with Respect to \( md_{ji}^{*} \)

The partial derivative of JDBKIFCM wrt \( md_{ji}^{*} \) is:

$$ \frac{\partial J}{{\partial md_{ji}^{*} }} = 2m \cdot md_{ji}^{*(m - 1)} \left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right) + \lambda_{i} $$
(34)

Equate (31) to zero to solve for \( md_{ji}^{*} \):

$$ \frac{\partial J}{{\partial md_{ji}^{*} }} = 0 $$
(35)
$$ \Rightarrow 2m \cdot md_{ji}^{*(m - 1)} \left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right) + \lambda_{i} = 0 $$
(36)
$$ \Rightarrow md_{ji}^{*} = \left( { - \tfrac{{\lambda_{i} }}{{2m.\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)}}} \right)^{{\tfrac{1}{{\left( {m - 1} \right)}}}} $$
(37)

To fulfil the following constraint:

$$ 0 \le md_{ji}^{*} \le 1 $$

and \( \sum\nolimits_{i = 1}^{nc + 1} {md_{ji}^{*} } = 1 \) for \( \forall j \in \left[ {1,n} \right] \).

\( md_{(nc + 1)j}^{*} = 1 \) when j denoting an outlier and \( \sum\nolimits_{i = 1}^{nc} {md_{ji}^{*} } = 1 \) for j denoting any data point.

$$ md_{ji}^{*} = \tfrac{{md_{ji}^{*} }}{{\sum\nolimits_{i = 1}^{nc + 1} {md_{ji}^{*} } }} $$
(38)

using Eq. (34), Eq. (35) can be written as:

$$ md_{ji}^{*} = \frac{{\left( { - \tfrac{{\lambda_{i} }}{{2m.\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)}}} \right)^{{\tfrac{1}{{\left( {m - 1} \right)}}}} }}{{\sum\nolimits_{i = 1}^{nc + 1} {\left( {\left( { - \tfrac{{\lambda_{i} }}{{2m.\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)}}} \right)^{{\tfrac{1}{{\left( {m - 1} \right)}}}} } \right)} }} $$
(39)
$$ \Rightarrow md_{ji}^{*} = \frac{{\mathop {\left( { - \tfrac{1}{{\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)}}} \right)}\nolimits^{{\tfrac{1}{{\left( {m - 1} \right)}}}} }}{{\sum\nolimits_{i = 1}^{nc + 1} {\left( {\left( { - \tfrac{1}{{\left( {1 - K\left( {d_{j} ,C_{i} } \right)} \right)}}} \right)^{{\tfrac{1}{{\left( {m - 1} \right)}}}} } \right)} }} $$
(40)

Using following equation:

$$ \Phi_{{d_{ji}^{2} }} = \left\| {\Phi \left( {d_{j} } \right) - \Phi \left( {C_{i} } \right)} \right\|^{2} $$
(41)

Equation (43) can be re written as:

$$ md_{ji}^{*} = \frac{1}{{\sum\nolimits_{j = 1}^{nc + 1} {\left( {\frac{{\Phi_{{d_{ic}^{2} }} }}{{\Phi_{{d_{ij}^{2} }} }}} \right)^{{\tfrac{1}{m - 1}}} } }} $$
(42)

1.1.2 Partial Derivation of JDBKIFCM with Respect to Ci

The partial derivation of JDBKIFCM with respect to Ci is:

$$ \frac{\partial J}{{\partial C_{i} }} = 2\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( { - \exp \left( { - \tfrac{{\sum {\left| {d_{j}^{a} - C_{i}^{a} } \right|^{b} } }}{{h^{2} }}} \right)} \right)\left( {\tfrac{{b\left( {d_{j} - C_{i} } \right)^{(b - 1)} \left( { - 1} \right)(aC_{i}^{(a - 1)} )}}{{h^{2} }}} \right)} $$
(43)
$$ \Rightarrow \frac{\partial J}{{\partial C_{i} }} = 2ab\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {\exp \left( { - \tfrac{{\sum {\left| {d_{j}^{a} - C_{i}^{a} } \right|^{b} } }}{{h^{2} }}} \right)} \right)\left( {\tfrac{{\left( {d_{j}^{a} - C_{i}^{a} } \right)^{(b - 1)} (C_{i}^{(a - 1)} )}}{{h^{2} }}} \right)} $$
(44)
$$ \Rightarrow \frac{\partial J}{{\partial C_{i} }} = 2ab\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {K\left( {d_{j} ,C_{i} } \right)} \right)\left( {\tfrac{{\left( {d_{j} - C_{i} } \right)^{(b - 1)} (C_{i}^{(a - 1)} )}}{{h^{2} }}} \right)} $$
(45)

To solve for Ci Equate Eq. (44) to zero:

$$ \frac{\partial J}{{\partial C_{i} }} = 0 $$
(46)
$$ \Rightarrow 2ab\sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {K\left( {d_{j} ,C_{i} } \right)} \right)\left( {\tfrac{{\left( {d_{j} - C_{i} } \right)^{(b - 1)} (C_{i}^{(a - 1)} )}}{{h^{2} }}} \right)} = 0 $$
(47)
$$ \Rightarrow \sum\limits_{j = 1}^{n} {md_{ji}^{*m} \left( {K\left( {d_{j} ,C_{i} } \right)} \right)\left( {\tfrac{{\left( {d_{j} - C_{i} } \right)^{(b - 1)} (C_{i}^{(a - 1)} )}}{{h^{2} }}} \right)} = 0 $$
(48)

From above, either Ci = 0 or Ci = dj or \( md_{ji}^{*} = 0 \); \( md_{ji}^{*} \) is 0 when dj is an outlier. Ci = 0 or Ci = dj is not giving updation of Ci. So, update Ci using following equation:

$$ C_{i} = \frac{{\sum\nolimits_{j = 1}^{n} {md_{ji}^{*m} \left( {d_{j} } \right)} }}{{\sum\nolimits_{j = 1}^{n} {md_{ji}^{*m} } }} $$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosain, A., Dahiya, S. A New Robust Fuzzy Clustering Approach: DBKIFCM. Neural Process Lett 52, 2189–2210 (2020). https://doi.org/10.1007/s11063-020-10345-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10345-1

Keywords

Navigation