Skip to main content
Log in

Evolved Fuzzy Min-Max Neural Network for Unknown Labeled Data and its Application on Defect Recognition in Depth

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Pattern classification is one of the most important issue in the data-driven application domains. Unlike the traditional unlabeled data, unknown labeled data refers to the testing data that cannot be classified into the existed category in this paper. How to learn the unknown labeled data is a crucial issue in the data classification. In this paper, an evolved fuzzy min-max neural network for unknown labeled data classification (FMM-ULD) is proposed. In FMM-ULD, the unknown labeled data handling process is designed. Moreover, in the unknown labeled data handling process, a decision function and a threshold function are designed. In addition, FMM-ULD can realize further correction for the unsatisfactory data classification of the known category. The experimental results using UCI benchmark data set show that FMM-ULD get good performance for handling the unknown labeled data as a general method. In addition, the application result on the pipeline defect recognition in depth shows that FMM-ULD is effective in handling the real-application unknown labeled data problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Yu Z, Xu D, Yu J, Yu T, Zhao Z, Zhuang Y, Tao D (2019) Activitynet-qa: a dataset for understanding complex web videos via question answering, 06

  2. Yu Z, Yu J, Xiang C, Fan J, Tao D (2018) Beyond bilinear: generalized multimodal factorized high-order pooling for visual question answering. IEEE Trans Neural Netw Learn Syst 29(12):5947–5959

    Article  Google Scholar 

  3. Yu J, Zhu C, Zhang J, Huang Q, Tao D (2020) Spatial pyramid-enhanced netvlad with weighted triplet loss for place recognition. IEEE Trans Neural Netw Learn Syst 31(2):661–674

    Article  Google Scholar 

  4. Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal MachIntell 5:1–1

    Google Scholar 

  5. Yu J, Yao J, Zhang J, Yu Z, Tao D (2020) Sprnet: single-pixel reconstruction for one-stage instance segmentation. IEEE Trans Cybern 3:1–12

    Google Scholar 

  6. Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014

    Article  Google Scholar 

  7. Wang J, Shuliang X, Duan B, Liu C, Liang J (2019) An ensemble classification algorithm based on information entropy for data streams. Neural Process Lett 50(3):2101–2117

    Article  Google Scholar 

  8. Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process 27(5):2420–2432

    Article  MathSciNet  Google Scholar 

  9. Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning in practice. MITP, New York

    Book  Google Scholar 

  10. Fuming Q, Liu J, Zhu H, Zhou B (2020) Wind turbine fault detection based on expanded linguistic terms and rules using non-singleton fuzzy logic. Appl Energy 262:114469

    Article  Google Scholar 

  11. Liu J, Ma Y, Qu F, Zang D (2019) Semi-supervised fuzzy min-max neural network for data classification. Neural Process Lett 6:1–1

    Google Scholar 

  12. Bishop CM (2006) Pattern recognition and machine learning. Inf Sci Stat

  13. Gabrys B (2002) Agglomerative learning algorithms for general fuzzy min-max neural network. J VLSI Sig Process Syst Sig Image Video Technol 32(1):67–82

    Article  Google Scholar 

  14. Likas A (2001) Reinforcement learning using the stochastic fuzzy min-max neural network. Neural Process Lett 13(3):213–220

    Article  Google Scholar 

  15. Shinde S, Kulkarni U (2016) Extracting classification rules from modified fuzzy mincmax neural network for data with mixed attributes. Appl Soft Comput 40:364–378

    Article  Google Scholar 

  16. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  17. Yu Z, Yu J, Cui Y, Tao D, Tian Q (2019) Deep modular co-attention networks for visual question answering. In: 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 6274–6283

  18. Simpson PK (1992) Fuzzy min-max neural networks. I. classification. IEEE Trans Neural Networks 3(5):776–786

    Article  Google Scholar 

  19. Nandedkar AV, Biswas PK (2009) A granular reflex fuzzy mincmax neural network for classification. IEEE Trans Neural Netw 20(7):1117–1134

    Article  Google Scholar 

  20. Rizzi A, Panella M, Frattale FM (2002) Adaptive resolution min-max classifiers. IEEE Trans Neural Netw 13(2):402–414

    Article  Google Scholar 

  21. Jawarkar NP, Holambe RS, Basu TK (2011) Use of fuzzy min-max neural network for speaker identification. In: 2011 International conference on recent trends in information technology (ICRTIT), pp 178–182

  22. Falah Mohammed M, Peng Lim C (2017) A new hyperbox selection rule and a pruning strategy for the enhanced fuzzy mincmax neural network. Neural Netw 86:69–79

    Article  Google Scholar 

  23. Quteishat A, Lim CP, Tan KS (2010) A modified fuzzy mincmax neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Trans Syst Man Cybern Part A Syst Humans 40(3):641–650

    Article  Google Scholar 

  24. Zhang H, Liu J, Ma D, Wang Z (2011) Data-core-based fuzzy min-max neural network for pattern classification. IEEE Trans Neural Netw 22(12):2339–2352

    Article  Google Scholar 

  25. Nandedkar AV, Biswas PK (2007) A fuzzy min-max neural network classifier with compensatory neuron architecture. IEEE Trans Neural Netw 18(1):42–54

    Article  Google Scholar 

  26. Davtalab R, Dezfoulian MH, Mansoorizadeh M (2014) Multi-level fuzzy min-max neural network classifier. IEEE Trans Neural Netw Learn Syst 25(3):470–482

    Article  Google Scholar 

  27. Zhang X, Hang C-C, Tan S, Wang P-Z (1996) The min-max function differentiation and training of fuzzy neural networks. IEEE Trans Neural Netw 7(5):1139–1150

    Article  Google Scholar 

  28. Tagliaferri R, Eleuteri A, Meneganti M, Barone F (2001) Fuzzy min-max neural networks: from classification to regression. Soft Comput 5(1):69–76

    Article  Google Scholar 

  29. Bezdek JC, Ehrlich R, Full W (1984) Fcm: the fuzzy c-means clustering algorithm. Comput Geosci 10(2):191–203

    Article  Google Scholar 

  30. Jain AK (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  31. Simpson PK (1993) Fuzzy min-max neural networks-part 2: clustering. IEEE Trans Fuzzy Syst 1(1):32–45

    Article  Google Scholar 

  32. Fogel DB, Simpson PK (1993) Evolving fuzzy clusters. In: IEEE international conference on neural networks, pp 1829–1834, vol 3

  33. Seera M, Lim CP, Loo CK, Singh H (2016) Power quality analysis using a hybrid model of the fuzzy mincmax neural network and clustering tree. IEEE Trans Neural Netw Learn Syst 27(12):2760–2767

    Article  Google Scholar 

  34. Liu J, Ma Y, Zhang H, Hanguang S, Xiao G (2017) A modified fuzzy min-max neural network for data clustering and its application on pipeline internal inspection data. Neurocomputing 238:56–66

    Article  Google Scholar 

  35. Blake CL, Keogh E, Merz CJ (1998) Uci repository of machine learning databases. http://ftp.ics.uci.edu/pub/machine-learning-databases

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFF0108800), the National Science Foundation of China (61973071, 61627809), the National Science Foundation of Liaoning Province (\(2019-KF-03-04\)) and Liaoning Revitalization Talents Program(XLYC1907138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjuan Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, J. & Zhao, Y. Evolved Fuzzy Min-Max Neural Network for Unknown Labeled Data and its Application on Defect Recognition in Depth. Neural Process Lett 53, 85–105 (2021). https://doi.org/10.1007/s11063-020-10377-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10377-7

Keywords

Navigation