Skip to main content

Advertisement

Log in

Symbolic Regression Based Extreme Learning Machine Models for System Identification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Reproducible machine learning models with less number of parameters and fast optimization are preferred in embedded system design for the applications of artificial intelligence. Due to implementation advantages, symbolic regression with genetic programming has been used for modeling data. In addition, extreme learning machines have been designed with acceptable performances in virtue of random learning strategy. In this paper, symbolic regression featured extreme learning machine models are proposed for the system identification. The symbolic regression layer with mathematical operators and basis functions has been randomly constructed instead of genetic programming whereas the output weighting parameters are optimized via least-squares optimization as in extreme learning machines. Consequently; implementable, efficient and easy designed models are constructed for future applications. Comparative results of the proposed and literature models present that proposed models provided smaller mean-squared errors and minimum-descriptive length performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ljung L (1999) System identification. Wiley encyclopedia of electrical and electronics engineering. Wiley, Hoboken, pp 1–19

    MATH  Google Scholar 

  2. Kumpati SN, Kannan P et al (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  3. Huang G-B, Chen L, Siew CK et al (2006) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892

    Article  Google Scholar 

  4. Li L, Zhao K, Li S, Sun R, Cai S (2020) Extreme learning machine for supervised classification with self-paced learning. Neural Process Lett 58:1–22

    Google Scholar 

  5. Ragusa E, Gianoglio C, Gastaldo P, Zunino R (2018) A digital implementation of extreme learning machines for resource-constrained devices. IEEE Trans Circuits Syst II Express Briefs 65(8):1104–1108

    Article  Google Scholar 

  6. Lv W, Kang Y, Zheng WX, Wu Y, Li Z (2020) Feature-temporal semi-supervised extreme learning machine for robotic terrain classification. Express briefs. IEEE Trans Circuits Syst II 67:3567–3571

    Article  Google Scholar 

  7. Koza JR, Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection, vol 1. MIT Press, Cambridge

    MATH  Google Scholar 

  8. Meredig B, Wolverton C (2013) A hybrid computational-experimental approach for automated crystal structure solution. Nat Mater 12(2):123–127

    Article  Google Scholar 

  9. Schmidt M, Lipson H (2009) Distilling free-form natural laws from experimental data. Science 324(5923):81–85

    Article  Google Scholar 

  10. La Cava W, Danai K, Spector L (2016) Inference of compact nonlinear dynamic models by epigenetic local search. Eng Appl Artif Intell 55:292–306

    Article  Google Scholar 

  11. Derner E, Kubalík J, Ancona N, Babuška R (2020) Constructing parsimonious analytic models for dynamic systems via symbolic regression. Appl Soft Comput 94:106432

    Article  Google Scholar 

  12. Chen Q, Zhang M, Xue B (2017) Feature selection to improve generalization of genetic programming for high-dimensional symbolic regression. IEEE Trans Evol Comput 21(5):792–806

    Article  Google Scholar 

  13. Wang Y, Wagner N, Rondinelli JM (2019) Symbolic regression in materials science. MRS Commun 9(3):793–805

    Article  Google Scholar 

  14. Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters self-adjusting extreme learning machine. Neural Proces Lett 44(3):813–830

    Article  Google Scholar 

  15. Schmidt MD, Lipson H (2008) Co-evolving fitness predictors for accelerating evaluations and reducing sampling

  16. Sierra A, Macias JA, Corbacho F (2001) Evolution of functional link networks. IEEE Trans Evol Comput 5(1):54–65

    Article  Google Scholar 

  17. Beyhan S, Kavaklioglu K (2015) Comprehensive modeling of u-tube steam generators using extreme learning machines. IEEE Trans Nuclear Sci 62(5):2245–2254

    Article  Google Scholar 

  18. Söderström T, Stoica P (1989) System identification. Prentice-Hall International, Upper Saddle River

    MATH  Google Scholar 

  19. Tang Y, Han Z, Liu F, Guan X (2016) Identification and control of nonlinear system based on Laguerre-ELM wiener model. Commun Nonlinear Sci Numer Simul 38:192–205

    Article  MathSciNet  Google Scholar 

  20. Mastorocostas PA, Theocharis JB (2002) A recurrent fuzzy-neural model for dynamic system identification. IEEE Trans Syst Man Cybern Part B Cybern 32(2):176–190

    Article  Google Scholar 

  21. Beyhan S, Alci M (2010) Fuzzy functions based ARX model and new fuzzy basis function models for nonlinear system identification. Appl Soft Comput 10(2):439–444

    Article  Google Scholar 

  22. Reddy R, Saha P (2017) Modelling and control of nonlinear resonating processes: part I–system identification using orthogonal basis function. Int J Dyn Control 5(4):1222–1236

    Article  MathSciNet  Google Scholar 

  23. Hernandez E, Arkun Y (1996) Stability of nonlinear polynomial ARMA models and their inverse. Int J Control 63(5):885–906

    Article  MathSciNet  Google Scholar 

  24. Al-Ajlouni AF, Schilling RJ, Harris S (2004) Identification of nonlinear discrete-time systems using raised-cosine radial basis function networks. Int J Syst Sci 35(4):211–221

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Başak Esin Köktürk-Güzel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köktürk-Güzel, B.E., Beyhan, S. Symbolic Regression Based Extreme Learning Machine Models for System Identification. Neural Process Lett 53, 1565–1578 (2021). https://doi.org/10.1007/s11063-021-10465-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10465-2

Keywords

Navigation