Skip to main content
Log in

Fixed-Time Synchronization of Neural Networks with Parameter Uncertainties via Quantized Intermittent Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we study the fixed-time synchronization (FIXTS) of neural networks (NNs) with parameter uncertainties via quantized intermittent control. Based on the intermittent control strategy and quantitative control theory, sufficient conditions are established to achieve synchronization of NNs and the synchronization time can be estimated. In addition, this paper also considers the synchronization of NNs under different situations. Finally, a simulation example is given to verify the correctness of the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He X, Zhao Z, Su J, Yang Q, Zhu D (2019) Adaptive inverse control of a vibrating coupled vessel-riser system with input backlash. IEEE Trans Syst Man Cybern Syst 51(8):4706–4715

    Article  Google Scholar 

  2. Xu Y, Zhou W, Lu H, Xie C, Tong D (2018) Adaptive finite-time synchronization of neutral type dynamical network with double derivative coupling. Neural Process Lett 48(2):1175–1186

    Article  Google Scholar 

  3. Zhang G, Li X, Xia Y (2021) Multi-event triggered sliding mode control for a class of complex neural networks. Comput Electr Eng 96:107506

    Article  Google Scholar 

  4. Fan Y, Mei J, Liu H, Fan Y, Liu F, Zhang Y (2020) Fast synchronization of complex networks via aperiodically intermittent sliding mode control. Neural Process Lett 51(2):1331–1352

    Article  Google Scholar 

  5. Li L, Mu G (2019) Synchronization of coupled complex-valued impulsive neural networks with time delays. Neural Process Lett 50(3):2515–2527

    Article  MathSciNet  Google Scholar 

  6. Huang J, Li C, Huang T, Han Q (2013) Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control. Nonlinear Dyn 71:469–478

    Article  MathSciNet  Google Scholar 

  7. Ding K, Zhu Q, Yang X (2021) Intermittent estimator-based mixed passive and h \(\infty \) control for high-speed train with actuator stochastic fault. IEEE Trans Cyber. https://doi.org/10.1109/TCYB.2021.3079437

    Article  Google Scholar 

  8. Kong F, Zhu Q, Sakthivel R, Mohammadzadeh A (2021) Fixed-time synchronization analysis for discontinuous fuzzy inertial neural networks with parameter uncertainties. Neurocomputing 422:295–313

    Article  Google Scholar 

  9. Mei J, Jiang M, Wang B, Long B (2013) Finite-time parameter identification and adaptive synchronization between two chaotic neural networks. J Franklin Inst 350(6):1617–1633

    Article  MathSciNet  Google Scholar 

  10. Ott E (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  Google Scholar 

  11. Wang L, Wu J, Wang X (2021) Finite-time stabilization of memristive neural networks with time delays. Neural Process Lett 53(1):299–318

    Article  Google Scholar 

  12. Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57:2106–2110

    Article  MathSciNet  Google Scholar 

  13. Yang X, Lam J, Ho D, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62:5511–5521

    Article  MathSciNet  Google Scholar 

  14. Zhu X, Yang X, Alsaadi FE, Hayat T (2018) Fixed-time synchronization of coupled discontinuous neural networks with nonidentical perturbations. Neural Process Lett 48(2):1161–1174

    Article  Google Scholar 

  15. Kong F, Zhu Q (2021) New fixed-time synchronization control of discontinuous inertial neural networks via indefinite lyapunov-krasovskii functional method. Int J Robust Nonlinear Control 31(2):471–495

    Article  MathSciNet  Google Scholar 

  16. Wang J, Zhang H, Wang Z, Gao D (2017) Finite-time synchronization of coupled hierarchical hybrid neural networks with time-varying delays. IEEE Trans Cyber 47:2995–3004

    Article  Google Scholar 

  17. Zhang Z, Cao J (2019) Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method. IEEE Trans Neural Netw Learn Syst 30:1476–1485

    Article  MathSciNet  Google Scholar 

  18. Xu C, Yang X, Lu J, Feng J, Alsaadi F, Hayat T (2018) Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans Cyber 48:3021–3027

    Article  Google Scholar 

  19. Ding K, Zhu Q (2021) Fuzzy intermittent extended dissipative control for delayed distributed parameter systems with stochastic disturbance: a spatial point sampling approach. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2021.3065524

    Article  Google Scholar 

  20. Wan Y, Cao J, Wen G (2017) Quantized synchronization of chaotic neural networks with scheduled output feedback control. IEEE Trans Neural Netw Learning Syst 28:2638–2647

    Article  MathSciNet  Google Scholar 

  21. Liu Z, Wang F, Zhang Y, Chen C (2016) Fuzzy adaptive quantized control for a class of stochastic nonlinear uncertain systems. IEEE Trans Cyber 46:524–534

    Article  Google Scholar 

  22. Yang X, Cao J (2013) Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans Circuits Syst I Regul Papers 60:2431–2439

    Article  MathSciNet  Google Scholar 

  23. Miao Q, Tang Y, Lu S, Fang J-A (2009) Lag synchronization of a class of chaotic systems with unknown parameters. Nonlinear Dyn 57:107–112

    Article  MathSciNet  Google Scholar 

  24. Jing T, Zhang D, Jing T (2020) Finite-time synchronization of hybrid-coupled delayed dynamic networks via aperiodically intermittent control. Neu Process Lett pp. 1–21

  25. Gan Q, Xiao F, Sheng H (2019) Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control. J. Frankl. Inst. 356:6656–6677

    Article  MathSciNet  Google Scholar 

  26. Khalil HK (2002) “[khalil] - nonlinear systems.pdf,”

  27. Sui X, Yang Y, Wang F, Zhang L (2017) Finite-time anti-synchronization of time-varying delayed neural networks via feedback control with intermittent adjustment. Adv Diff Equ 2017:1–16

    Article  MathSciNet  Google Scholar 

  28. Lellis PD, Bernardo M, Russo G (2011) On quad, lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans Circuits Syst I: Regul Papers 58:576–583

    Article  MathSciNet  Google Scholar 

  29. Zhai G, Lin H, Michel A, Yasuda K (2004) Stability analysis for switched systems with continuous-time and discrete-time subsystems. In: Proceedings of the 2004 American control conference, vol. 5, pp. 4555–4560 vol.5

  30. Hu J, Sui G, Du S, Li X (2017) Finite-time stability of uncertain nonlinear systems with time-varying delay. Math Probl Eng 2017:1–9

    MathSciNet  MATH  Google Scholar 

  31. Mei J, Lu Z, Hu J, Fan Y (2020) Guaranteed cost finite-time control of uncertain coupled neural networks. IEEE Trans Cyber

Download references

Acknowledgements

This work is supported by Fundamental Research Funds for the Central Universities, China (Project No. SWU020005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjian Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Huang, J. & Wang, X. Fixed-Time Synchronization of Neural Networks with Parameter Uncertainties via Quantized Intermittent Control. Neural Process Lett 54, 2303–2318 (2022). https://doi.org/10.1007/s11063-021-10731-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10731-3

Keywords

Navigation