Skip to main content
Log in

Intersection of a ruled surface with a free-form surface

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2007

Abstract

This paper presents a simple method for computing the intersection curve of a ruled surface and a free-form surface. The basic idea is to reduce the problem of surface intersection to the one of projecting an appropriate curve such as a directrix of the ruled surface, along its indicatrix curve (direction vector field of its generating lines), onto the free-form surface; the projection curve is just the intersection curve. With techniques in classical differential geometry, we derive the differential equations of the intersection curve in the cases of parametrically and implicitly defined free-form surfaces. The intersection curve naturally inherits the parameter of the chosen directrix. Moreover, it is independent of the base surface geometry and its parameterization, and is obtained by numerically solving the initial-value problem for a system of first-order ordinary differential equations in the parametric domain associated to the surface representation for parametric case or in 3D space for implicit case. Some experimental examples are also given to demonstrate that the presented method is effective and potentially useful in computer aided design and computer graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajaj, C.L., Hoffmann, C.M., Lynch, R.E.: Tracing surface intersections. Comput. Aided Geom. Des. 5(4), 285–307 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Wang, W.-P., Joe, B., Goldman, R.: Computing quadric surface intersections based on an analysis of plane cubic curves. Graph. Models 64(6), 335–367 (2003)

    Article  Google Scholar 

  3. Grandine, T.A., Klein, F.W.: A new approach to the surface intersection problem. Comput. Aided Geom. Des. 14(2), 111–134 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bajaj, C.L., Xu, G.: NURBS approximation of surface–surface intersection curves. Adv. Comput. Math. 2(1), 1–21 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sederberg, T.M., Nishita, T.: Geometric Hermite approximation of surface patch intersection curves. Comput. Aided Geom. Des. 8(2), 97–114 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Puig-Pey, J., Gálvez, A., Iglesias, A.: A new differential approach for parametric-implicit surface intersection. Lect. Notes Comput. Sci. 2657, 897–906 (2003)

    Article  Google Scholar 

  7. Puig-Pey, J., Gálvez, A., Iglesias, A.: A differential method for parametric surface intersection. Lect. Notes Comput. Sci. 3044, 651–660 (2004)

    Article  Google Scholar 

  8. Wu, S.-T., Andrade, L.N.: Marching along a regular surface/surface intersection with circular steps. Comput. Aided Geom. Des. 16(4), 246–268 (1999)

    Article  MathSciNet  Google Scholar 

  9. Elber, G., Choi, J.-J., Kim, M.-S.: Ruled tracing. Vis. Comput. 13(2), 78–94 (1997)

    Article  Google Scholar 

  10. Song, X.W., Sederberg, T.W., Zheng, J.M.: Linear perturbation methods for topologically consistent representations of free-form surface intersections. Comput. Aided Geom. Des. 21(3), 303–319 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Martin, R.R., de Pont, J., Sharrock, T.J.: Cyclide Surfaces in computer aided design. In: Gregory, J.A. (ed.) Mathematics of Surfaces, pp. 253–267. Oxford University Press, Oxford, UK (1986)

    Google Scholar 

  12. Johnstone, J.: A new intersection algorithm for cyclides and swept surfaces using circle decomposition. Comput. Aided Geom. Des. 10(1), 1–24 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heo, H.-S., Kim, M.-S., Elber, G.: The intersection of two ruled surfaces. Comput. Aided Des. 31(1), 33–50 (1999)

    Article  MATH  Google Scholar 

  14. Seong, J.-K., Kim K.-J., Kim. M.-S., Elber, G., Martin, R.R.: Intersecting a freeform surface with a general swept surface. Comput. Aided Des. 37(5), 473–483 (2005)

    Article  Google Scholar 

  15. Do Carmo M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, New Jersey (1976)

    MATH  Google Scholar 

  16. Hoschek, J., Schwanecke, U.: Intersection and approximation with ruled surfaces. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII, pp.213–231. Information Geometers, Winchester (1998)

    Google Scholar 

  17. Peternell, M., Pottmann, H., Ravani, B.: On the computational geometry of ruled surfaces. Comput. Aided Des. 31(1), 17–32 (1999)

    Article  MATH  Google Scholar 

  18. Hughes, J., Möller,T.: Building an orthonormal basis from a unit vector. J. Graphics Tools 4(4), 33–35 (1999)

    Google Scholar 

  19. Seong, J.-K., Kim, K.-J., Kim M.-S., Elber, G.: Intersecting a Freeform Surface with a Ruled or a Ringed Surface. In: Proceedings of the Geometric Modeling and Processing 2004, pp. 38–48. Tsinghua University, Beijing, 13–15 April 2004

  20. Dixon, A.L.: The eliminant of three quantics in two independent variables. Proc. London Math. Soc. 6, 49–69, 209–236 (1908)

    Google Scholar 

  21. Manocha, D., Krishnan, S.: Algebraic pruning: a fast technique for curve and surface intersection. Comput. Aided Geom. Des. 14(9), 823–845 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Martínez, J.M.: Practical quasi-Newton methods for solving non-linear systems. J. Comput. Appl. Math. 124(1–2), 97–121 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lester, D., Chambers, S., Lu, H.L.: A constructive algorithm for finding the exact roots of polynomials with computable real coefficients. Theor. Comp. Sci. 279(1–2), 51–64(2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fortune, S.: Polynomial root finding using iterated Eigenvalue computation. In: Mourrain, B. (ed.) Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation(ISSAC), pp. 121–128. ACM, New York (2001)

    Chapter  Google Scholar 

  25. Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower dimensional formulation. ACM Trans.Graph. 16(1), 74–106 (1997)

    Article  Google Scholar 

  26. Krishnan, S., Manocha, D.: Algebraic loop detection and evaluation algorithms for curve and surface interrogations. In: Proceedings of Graphics Interface, pp. 87–94, Toronto, Canada, 22–24 May 1996

  27. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves II: multiple intersections. CVGIP: GMIP 57(2), 81–100 (1995)

    Article  Google Scholar 

  28. Manocha, D., Demmel, J.: Algorithms for intersecting parametric and algebraic curves I: simple intersections. ACM Trans. Graph. 13(1), 73–100 (1994)

    Article  MATH  Google Scholar 

  29. Hanrahan, P.: A survey of ray-surface intersection algorithms. In: Glassner, A.S. (ed.) An Introduction to Ray Tracing, pp. 79–120. Academic, London (1989)

    Google Scholar 

  30. The MathWorks, Inc.: Using MATLAB, version 6, The MathWorks, Natick, MA (2000)

    Google Scholar 

  31. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flanneery, B.P.: Numerical Recipes (2nd edition), Cambridge University Press, Cambridge (1992)

    Google Scholar 

  32. Puig-Pey, J., Gálvez, A., Iglesias, A.: Helical curves on surface for computer aided geometric design and manufacturing. Lect. Notes Comput. Sci. 3044, 771–784 (2004)

    Article  Google Scholar 

  33. Wolter, F.-E., Tushy, S.T.: Approximation of high-degree and procedural curves. Eng. Comput. 8(2), 61–80 (1992)

    Article  Google Scholar 

  34. Qu, J., Sarma, R.: The continuous non-linear approximation of procedurally defined curves using integral B-Splines. Eng. Comput. 20(1), 22–30 (2004)

    Article  Google Scholar 

  35. Renner, G., Weiβ, V.: Exact and approximate computation of B-spline curves on surfaces. Comput. Aided Des. 36(4), 351–362 (2004)

    Article  Google Scholar 

  36. Wang, W., Goldman, R., Tu, C.: Enhacing Levin’s method for computing quadric-surface intersections. Comput. Aided Geom. Des. 20(7), 401–422 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Heo, H.-S., Hong, S.J., Seong, J.-K., Kim, M.-S., Elber, G.: The intersection of two ringed surfaces and some related problems. Graph. Models 63(4), 228–244 (2001)

    Article  MATH  Google Scholar 

  38. Patrikalakis, N.M., Maekawa, T.: Shape Intersection problems. In: G. Farin, J. Hoschek, M.S. Kim (eds): Handbook of Computer Aided geometric Design. Chapter 25, pp. 623–650. Elsevier, Amsterdam (2002)

    Google Scholar 

  39. Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Geometric Design and Manufacturing. Springer, Heidelberg (2002)

    Google Scholar 

  40. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proceedings of ACM symposium on solid modeling and applications 2001, pp. 1–10, Ann Arbor, Michigan, USA, 4–8 June, 2001

  41. Puig-Pey, J., Galvez, A., Iglesias, A. Rodriguez, J., Corcuera, P., Gutierrez, F.: Some applications of scalar and vector fields to geometric processing of surfaces. Computers & Graphics 29(5), 723–729 (2005)

    Google Scholar 

  42. Abdel-Malek, K., Yeh, H.J.: On the determination of starting points for parametric surface intersections. Comput. Aided Des. 29(1), 21–35 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Wang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11075-007-9128-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Zhang, W. & Zhang, L. Intersection of a ruled surface with a free-form surface. Numer Algor 46, 85–100 (2007). https://doi.org/10.1007/s11075-007-9118-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9118-y

Keywords

AMS subject classifications

Navigation