Skip to main content
Log in

Non-uniform exponential tension splines

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe explicitly each stage of a numerically stable algorithm for calculating with exponential tension B-splines with non-uniform choice of tension parameters. These splines are piecewisely in the kernel of D 2(D 2p 2), where D stands for ordinary derivative, defined on arbitrary meshes, with a different choice of the tension parameter p on each interval. The algorithm provides values of the associated B-splines and their generalized and ordinary derivatives by performing positive linear combinations of positive quantities, described as lower-order exponential tension splines. We show that nothing else but the knot insertion algorithm and good approximation of a few elementary functions is needed to achieve machine accuracy. The underlying theory is that of splines based on Chebyshev canonical systems which are not smooth enough to be ECC-systems. First, by de Boor algorithm we construct exponential tension spline of class C 1, and then we use quasi-Oslo type algorithms to evaluate classical non-uniform C 2 tension exponential splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barsky, B.A.: Exponential and polynomial methods for applying tension to an interpolating spline curve. Comput. Vis. Graph. Image Process. 27, 1–18 (1984)

    Article  Google Scholar 

  2. Bister, D., Prautzsch, H.: A New Approach to Tchebycheffian B-Splines. In: Méhauteé, A.L., Rabut, C., Schumaker, L.L. (eds.) Curve and Surfaces in Geometric Design, pp. 35–43. Nashville, TN (1997)

  3. Bosner, T.: Knot insertion algorithms for weighted splines. In: Drmač, Z., Marušić, M., Tutek Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 151–160. (2005)

  4. Bosner, T.: Knot insertion algorithms for Chebyshev splines. Ph.D. thesis, Dept. of Mathematics, University of Zagreb (2006)

  5. Bosner, T., Rogina, M.: Numerically Stable Algorithm for Cycloidal Splines. Annali dell’Università di Ferrara (2007) (to appear)

  6. Burrill, C.W.: Measure, Integration, and Probability. McGraw-Hill Book Company (1972)

  7. Cohen, E., Lyche, T., Riesenfeld, R.: Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphic. Comput. Graph. Image Process. 14, 87–111 (1980)

    Article  Google Scholar 

  8. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Foley, T.A.: Interpolation with interval and point tension controls using cubic weighted ν-splines. ACM Trans. Math. Softw. 13(1), 68–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldman, R.N., Lyche, T. (eds.): Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces. SIAM (1993)

  11. Horvat, V., Rogina, M.: Tension spline collocation methods for singularly perturbed Volterra integro-differential and Volterra integral equations. J. Comput. Appl. Math. 140, 381–402 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kadalbajoo, M.K., Patidar, K.C.: Numerical solution of singularly perturbed two-point boundary value problems by spline in tension. Appl. Math. Comput. 131, 299–320 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koch, P.E., Lyche, T.: Exponential B-splines in tension. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, vol. 2, pp. 361–364. (1989)

  14. Koch, P.E., Lyche, T.: Construction of exponential tension B-splines of arbitrary order. In: Laurent, P.J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 255–258. Boston (1991)

  15. Kulkarni, R., Laurent, P.-J.: Q-splines. Numer. Algorithms 1, 45–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kvasov, B.I.: Algorithms for shape preserving local approximation with automatic selection of tension parameters. Comput. Aided Geom. Des. 17, 17–37 (2000)

    Article  MathSciNet  Google Scholar 

  17. Kvasov, B.I.: Shape–Preserving Spline Approximation. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  18. Lyche, T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–173 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Marušić, M.: Stable calculation by splines in tension. Grazer Math. Ber. 328, 65–76 (1996)

    Google Scholar 

  20. Marušić, M.: A fourth/second order accurate collocation method for singularly perturbed two-point boundary value problems using tension splines. Numer. Math. 88, 135–158 (2001)

    Article  MathSciNet  Google Scholar 

  21. Marušić, M., Rogina, M.: A collocation method for singularly perturbed two-point boundary value problems with splines in tension. Adv. Comput. Math. 6(1), 65–76 (1996)

    Article  MathSciNet  Google Scholar 

  22. Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mazure, M.-L.: Blossoms and optimal bases. Adv. Comput. Math. 20, 177–203 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mazure, M.-L., Pottmann, H.: Tchebycheff curves. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and Its Applications, pp. 187–218. Kluwer Academic Pub. (1996)

  25. Mülbach, G., Tang, Y.: Computing ECT–B-splines recursively. Numer. Algorithms 41, 35–78 (2006)

    Article  MathSciNet  Google Scholar 

  26. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pottmann, H., Wagner, M.G.: Helix splines as an example of affine Tchebycheffian splines. Adv. Comput. Math. 2, 123–142 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Prenter, P.M.: Piecewise L-Splines. Numer. Math. 18, 243–253 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Renka, R.J.: Interpolatory tension splines with automatic selection of tension factors. SIAM J. Sci. Stat. Comput. 8(3), 393–415 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Renka, R.J.: Algorithm 716 TSPACK: tension spline curve–fitting package. ACM Trans. Math. Softw. 19(1), 81–94 (1993)

    Article  MATH  Google Scholar 

  31. Rentrop, P.: An algorithm for the computation of the exponential spline. Numer. Math. 35, 81–93 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rogina, M.: Basis of splines associated with some singular differential operators. BIT 32, 496–505 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rogina, M.: Nove rekurentne relacije za Čebiševljeve spline funkcije i njihove primjene. Ph.D. thesis, Dept. of Mathematics, University of Zagreb (1994)

  34. Rogina, M.: On construction of fourth order Chebyshev splines. Math. Commun. 4, 83–92 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Rogina, M.: Algebraic proof of the B-Spline derivative formula. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 273–282. (2005)

  36. Rogina, M., Bosner, T.: On calculating with lower order Chebyshev splines. In: Laurent, P.J., Sabloniere, P., Schumaker, L.L. (eds.) Curves and Surfaces Design, pp. 343–353. Nashville (2000)

  37. Rogina, M., Bosner, T.: A de Boor type algorithm for tension splines. In: Cohen, A., Merrien, J.-L., Schumaker, L.L. (eds.) Curve and Surface Fitting, pp. 343–352. Brentwood (2003)

  38. Schumaker, L.L.: On Tchebycheffian spline functions. J. Approx. Theory 18, 278–303 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  39. Schumaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  40. Schumaker, L.L.: On recursions for generalized splines. J. Approx. Theory 36, 16–31 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schumaker, L.L.: On hyperbolic splines. J. Approx. Theory 38, 144–166 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schweikert, D.: An interpolation curve using splines in tension. J. Math. Phys. 45, 312–317 (1966)

    MATH  MathSciNet  Google Scholar 

  43. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina Bosner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosner, T., Rogina, M. Non-uniform exponential tension splines. Numer Algor 46, 265–294 (2007). https://doi.org/10.1007/s11075-007-9138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9138-7

Keywords

Mathematics Subject Classifications (2000)

Navigation