Skip to main content
Log in

A generalization of Müller’s iteration method based on standard information

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For finding a root of a function f, Müler’s method is a root-finding algorithm using three values of f in every step. The natural values available are values of f and values of its first number of derivatives, called standard information. Based on standard information, we construct an iteration method with maximal order of convergence. It is a natural generalization of Müller’s iteration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, Inc., New York (1972)

    MATH  Google Scholar 

  2. Bai, Z.Z.: A class of two-stage iterative methods for systems of weakly nonlinear equations. Numer. Algorithms 14, 295–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, Z.Z., Dong, J.L.: A modified damped Newton method for linear complementarity problems. Numer. Algorithms 42, 207–228 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, L., Cucker, F., Shub, M.F., Smale, S.: Complexity and Real Computation. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  5. Buff, X., Henriksen, C.: On König’s root-finding algorithms. Nonlinearlity 16, 989–1015 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Comtet, L.: Analyse Combinatoire, Tomes I et II (French). Presses Universitaires de France, Paris (1970)

    Google Scholar 

  7. Gerald, C.F., Wheatley, P.O.: Applied Numerical Analysis. Addison-Wesley, Reading, MA (1994)

    MATH  Google Scholar 

  8. Grau, M.: An improvement to the computing of nonlinear equation solutions. Numer. Algorithms 34, 1–12 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grau, M., Peris, J.M.: Iterative method generated by inverse interpolation with additional evaluations. Numer. Algorithms 40, 33–45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. König, J.: Über eine Eigenschaft der Potenzreihen. Math. Ann. 23, 447–449 (1884)

    Article  MathSciNet  Google Scholar 

  11. Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Boston, Birkhuser (2002)

    MATH  Google Scholar 

  12. Moser, J.: A new techniques for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. sci. USA 47, 1824–1831 (1961)

    Article  MATH  Google Scholar 

  13. Müller, D.E.: A method for solving algebraic equations using an automatic computer. Math. Tables Other Aids Comput. 10, 208–215 (1956)

    Article  Google Scholar 

  14. Nash, J.: The embedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  15. Nesterov, Y., Nemirovskii, A.: Interior-Point polynomial algorithms in convex programming. SIAM Studies in Applied Mathematics, vol. 13. Philadelphia (1994)

  16. Polyak, B.T., Newtons method and its use in optimization. Eur. J. Oper. Res. 181(3), 1086–1096 (2007). doi:10.1016/j.ejor.2005.06.076

    Article  MathSciNet  MATH  Google Scholar 

  17. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  18. Wang, X.H.: Convergence of an iteration process. J. Hangzhou University (2), 16–26 (1977)

  19. Wang, X.H.: Convergence on the iteration of Halley family in weak conditions. Chinese Sci. Bull. 42, 552–555 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, X.H.: On the Hermite interpolation. Sci. China Ser. A. 50, 1651–1660 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, X.H., Han, D.F.: On fixed points and Julia sets for iterations of two families. (Chinese) Math. Numer. Sin. 19, 219–224 (1997); translation in Chinese J. Numer. Math. Appl. 19, 94–100 (1997)

    MathSciNet  Google Scholar 

  22. Wang, X.H., Tang, P.P.: An iteration method with maximal order based on standard information. Int. J. Comput. Math. (2008, to appear)

  23. Wang, X.H., Wang, C.J.: Maximal stationary iterative methods for the solution of f  (k)(x) = 0. Sci. China Ser. A. (2008, submitted)

  24. Wang, X.H., Zheng, S.M., Han, D.F.: Convergence on Euler’s series, Euler’s iterative family and Helley’s iterative family under a point estimate criterion. (Chinese) Acta Math. Sinica 33, 721–738 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Wayne, C.E.: An introduction to KAM theory. Dynamical systems and probabilistic methods in partial differential equation. Lectures in Appl. Math. vol. 31. Amer. Math. Soc. Providence (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipei Tang.

Additional information

This work was partially supported by National Natural Science Foundation of China (Grant No. 10471128), NSFC (Grant No. 10731060).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Tang, P. A generalization of Müller’s iteration method based on standard information. Numer Algor 48, 347–359 (2008). https://doi.org/10.1007/s11075-008-9204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9204-9

Keywords

Mathematics Subject Classifications (2000)

Navigation