Skip to main content
Log in

Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce a generalized Krylov subspace \({\mathcal{G}_{m}(\mathbf{A};\mathbf{u})}\) based on a square matrix sequence {A j } and a vector sequence {u j }. Next we present a generalized Arnoldi procedure for generating an orthonormal basis of \({\mathcal{G}_{m}(\mathbf{A};\mathbf{u})}\). By applying the projection and the refined technique, we derive a restarted generalized Arnoldi method and a restarted refined generalized Arnoldi method for solving a large-scale polynomial eigenvalue problem (PEP). These two methods are applied to solve the PEP directly. Hence they preserve essential structures and properties of the PEP. Furthermore, restarting reduces the storage requirements. Some theoretical results are presented. Numerical tests report the effectiveness of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951)

    MATH  MathSciNet  Google Scholar 

  2. Bai, Z., Sleijpen, G., Van der Vorst, H.: Quadratic eigenvalue problems (Section 9.2). In: Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (eds.) Templates for the Solution of Algebraic Eigenvalue Problems: A Pratical Guide, pp. 281–290. SIAM, Philadelphia (2000)

    Google Scholar 

  3. Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26, 640–659 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dedieu, J., Tisseur, F.: Perturbation theory for homogeneous polynomial eigenvalue problems. Linear Algebra Appl. 358, 71–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Demmel, J.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hoplins University Press, Baltimore (1996)

    MATH  Google Scholar 

  7. Guo, J., Lin, W., Wang, C.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57–89 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Higham, N.J., Tisseur, F.: More on pseudospectra for polynomial eigenvalue problems and applications in control theory. Linear Algebra Appl. 351/352, 435–453 (2002)

    Article  MathSciNet  Google Scholar 

  9. Hochstenbach, M.E., van der Vorst, H.A.: Alternatives to the Rayleigh quotient for the quadratic eigenvalue problem. SIAM J. Sci. Comput. 25, 591–603 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hoffnung, L., Li, R.-C., Ye, Q.: Krylov type subspace methods for matrix polynomials. Linear Algebra Appl. 415, 52–81 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holz, U.B., Golub, G., Law, K.H.: A subspace approximation method for the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26, 498–521 (2004/05)

    Article  MathSciNet  Google Scholar 

  12. Hwang, T.M., Lin, W.W., Liu, J.L., Wang, W.: Jacobi-Davidson methods for cubic eigenvalue problem. Numer. Linear Algebra Appl. 12, 605–624 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hwang, T., Lin, W., Mehrmann, V.: Numerical solution of quadratic eigenvalue problems with structure-preserving methods. SIAM J. Sci. Comput. 24, 1283–1302 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ishihara, K.: Descent iterations for improving approximate eigenpairs of polynomial eigenvalue problems with general complex matrices. Computing 68, 239–254 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jia, Z.: Refined iterative algorithm based on Arnoldi’s process for large unsymmetric eigenproblems. Linear Algebra Appl. 259, 1–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jia, Z.: A refined subspace iteration algorithm for large spares eigenproblems. Appl. Numer. Math. 32, 35–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, R.-C., Ye, Q.: A Krylov subspace method for quadratic matrix polynomials with application to constrained least squares problems. SIAM J. Matrix Anal. Appl. 25, 405–428 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mehrmann, V., Watkins, D.: Polynomial eigenvalue problems with Hamiltonian structure. Electron. Trans. Numer. Anal. 13, 106–118 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Raeven, F.A.: A new Arnoldi approach for polynomial eigenproblems. In: Proceedings of the Copper Mountain Conference on Iterative Methods. http://www.mgnet.org/Conferences/CMCIM96/Psfiles/raeven.ps.gz (1996)

  20. Saad, Y.: Variations on Arnoldi’s method for computing eigenproblems of large non-Hermitian matrices. Linear Algebra Appl. 34, 269–295 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schmitz, H., Volk, K., Wendland, W.L.: On three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equ. 9, 323–337 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schwarz, H.R.: Methode der Finiten Elemente. Teubner, Stuttgart (1984)

    Google Scholar 

  23. Sleijpen, G.L.G., Booten, G.L., Fokkema, D.R., Van der Vorst, H.A.: Jacobi Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36, 595–633 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sleijpen, G.L.G., van der Vorst, H.A., van Gijzen, M.B.: Quadratic eigenproblems are no problem. SIAM News 29, 8–9 (1996)

    Google Scholar 

  25. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl. 309, 339–361 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tisseur, F., Higham, N.J.: Structured pseudospectra for polynomial eigenvalue problems, with applications. SIAM J. Matrix Anal. Appl. 23, 187–208 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Tisseur, F., Mearbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43, 235–286 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zeng, Y., Li, Y.: Integrable Hamiltonian systems related to the polynomial eigenvalue problem. Math. J. Phys. 31, 2835–2839 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

Yiqin Lin is supported by Scientific Research Startup Foundation of Hunan University of Science and Engineering.

Yimin Wei is supported by the National Natural Science Foundation of China and Shanghai Education Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, L., Lin, Y. & Wei, Y. Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems. Numer Algor 50, 17–32 (2009). https://doi.org/10.1007/s11075-008-9214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9214-7

Keywords

Mathematics Subject Classifications

Navigation