Skip to main content
Log in

A hybrid algorithm for solving linear inequalities in a least squares sense

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The need for solving a system of linear inequalities, A xb, arises in many applications. Yet in some cases the system to be solved turns out to be inconsistent due to measurement errors in the data vector b. In such a case it is often desired to find the smallest correction of b that recovers feasibility. That is, we are looking for a small nonnegative vector, y0, for which the modified system A xb - y is solvable. The problem of calculating the smallest correction vector is called the least deviation problem. In this paper we present new algorithms for solving this problem. Numerical experiments illustrate the usefulness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennet, K.P., Mangasarian, O.L.: Robust linear programming discrimination of two linearly inseparable sets. Optimiz. Methods Softw. 1, 23–34 (1992)

    Article  Google Scholar 

  2. Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

  4. Bramley, R., Winnicka, B.: Solving linear inequalities in a least squares sense. SIAM J. Sci. Comput. 17, 275–286 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Censor, Y., Altschuler, M.D., Powlis, W.D.: A computational solution of the inverse problem in radiation-therapy treatment planning. Appl. Math. Comput. 25, 57–87 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Censor, Y., Ben-Israel, A., Xiao, Y., Galvin, J.M.: On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra Appl. 428, 1406–1420 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Censor, Y., Elfving, T.: New methods for linear inequalities. Linear Algebra Appl. 42, 199–211 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Zenios, S.A.: Parallel Optimization, Theory Algorithms, and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  9. Chinneck, J.W.: Finding a useful subset of constraints for analysis in an infeasible linear progarm. INFORMS J. Comput. 9, 164–174 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chinneck, J.W.L: Feasibility and infeasibility in optimization: algorithms and computational methods. In: International Series in Operations Research and Management Sciences, vol. 118. Springer-Verlag (2007)

  11. Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. ORSA J. Comput. 3, 157–168 (1991)

    MATH  Google Scholar 

  12. Clark, D.I., Osborne, M.R.: On linear restricted and interval least-squares problems. IMA J. Numer. Anal. 8, 23–36 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coleman, T., Hulbert, L.: A globally and superlinearly convergent algorithm for quadratic programming with simple bounds. SIAM J. Optim. 3, 298–321 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dax, A.: The convergence of linear stationary iterative processes for solving singular unstructured systems of linear equations. SIAM Rev. 32, 611–635 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dax, A.: A row relaxation method for large ℓ1 problems. Linear Algebra Appl. 156, 793–818 (1991)

    Article  MathSciNet  Google Scholar 

  16. Dax, A.: On computational aspects of bounded linear least squares problems. ACM Trans. Math. Softw. 17, 64–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dax, A.: The smallest correction of an inconsistent system of linear inequalities. Optimiz. Eng. 2, 349–359 (2001)

    Article  MATH  Google Scholar 

  18. Dax, A.: The adventures of a simple algorithm. Linear Algebra Appl. 361, 41–61 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dax, A.: An open question on cyclic relaxation. BIT Numer. Math. 43, 929–943 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dax, A.: The ℓ1 solution of linear inequalities. Comput. Statist. Data Anal. 50, 40–60 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dax, A.: The distance between two convex sets. Linear Algebra Appl. 416, 184–213 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. De Leone, R., Mangasarian, O.L.: Serial and parallel solution of large scale linear programs by augmented Lagrangian successive overrelaxation. In: Kurzhanski, A., Neuwmann, K., Pallaschke, D. (eds.) Optimization, Parallel Processing and Applications. Lecture Notes in Ecomomics and Mathematical Systems, vol. 304, pp. 103–124. Springer, Berlin (1988)

    Google Scholar 

  23. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  24. De Pierro, A.R., Iusem, A.N.: A simultaneous projection method for linear inequalities. Linear Algebra Appl. 64, 243–253 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Eldén, L.: Algorithms for the regularization of ill-conditioned least squares problems. BIT 17, 134–145 (1977)

    Article  MATH  Google Scholar 

  26. Fletcher, R.: Practical Methods of Optimization. Wiley (1980)

  27. Fletcher, R., Jackson, M.P.: Minimization of a quadratic function of many variables subject only to lower and upper bounds. J. Inst. Math. Appl. 14, 159–174 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  29. Gill, P.E., Murray, W., Wright, M.H.: Numerical Linear Algebra and Optimization. Addison-Wesley (1991)

  30. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press (1983)

  31. Han, S.P.: Least-squares solution of linear inequalities. Technical Report 2141, Math. Res. Center, University of Wisconsin-Madison (1980)

  32. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Google Scholar 

  33. Hanson, R.J.: Linear least squares with bounds and linear constraints. SIAM J. Sci. Statist. Comput. 7, 826–834 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  34. Herman, G.T.: A relaxation method for reconstructing object from noisy x-rays. Math. Progr. 8, 1–19 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. Herman, G.T.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, New York, USA (1982)

    Google Scholar 

  36. Herman, G.T., Lent, A.: A family of iterative quadratic optimization algorithms for pairs of inequalities, with applications in diagnostic radiology. Math. Progr. Study 9, 15–29 (1978)

    MathSciNet  Google Scholar 

  37. Iusem, A.N., De Pierro, A.R.: A simultaneous iterative method for computing projections on polyhedra. SIAM J. Control 25, 231–243 (1987)

    Article  MATH  Google Scholar 

  38. Lent, A., Censor, Y.: Extensions of Hildreth’s row-action method for quadratic programming. SIAM J. Control Optim. 18, 444–454 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  39. Madsen, K., Nielsen, H.B., Pinar, M.C.: Bound constrained quadratic programming via piecewise quadratic functions. Math. Prog. 85, 135–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Madsen, K., Nielsen, H.B., Pinar, M.C.: A finite continuation algorithm for bound constrained quadratic programming. SIAM J. Optim. 9, 62–83 (1999)

    Article  MathSciNet  Google Scholar 

  41. Mangasarian, O.L.: Linear and nonlinear separation of patterns by linear programming. Oper. Res. 13, 444–452 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  42. Mangasarian, O.L.: Iterative solution of linear programs. SIAM J. Numer. Anal. 18, 606–614 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  43. Mangasarian, O.L.: Mathematical programming in machine learning. In: Di Pillo, G., Giannesi, F. (eds.) Nonlinear Optimization and Applications. Plenum Press, New York (1996)

    Google Scholar 

  44. Mangasarian, O.L.: Arbitrary-norm separating plane. Oper. Res. Lett. 24, 15–23 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  45. Mangasarian, O.L., De Leone, R.: Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs. Ann. Oper. Res. 14, 41–59 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  46. Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattern recognition via linear programming: theory and application to medical diagnosis. In: Coleman, T.F., Li, Y. (eds.) Large-scale Numerical Optimizations, pp. 22–31. SIAM, Philadelphia (1990)

    Google Scholar 

  47. Moré, J.J., Toraldo, G.: Algorithms for bound constrained quadratic programming problems. Numer. Math. 55, 377–400 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pinar, M.C.: Newton’s method for linear inequality systems. Eur. J. Oper. Res. 107, 710–719 (1998)

    Article  MATH  Google Scholar 

  49. Stewart, G.W.: Matrix Algorithms, Volume 1: Basic Decompositions. SIAM, Philadelphia (1998)

    Google Scholar 

  50. Watson, G.A.: Choice of norms for data fitting and function approximation. Acta. Numer. 7, 337–377 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achiya Dax.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dax, A. A hybrid algorithm for solving linear inequalities in a least squares sense. Numer Algor 50, 97–114 (2009). https://doi.org/10.1007/s11075-008-9218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9218-3

Keywords

Navigation