Skip to main content
Log in

Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h 2 max (1,logk  − 1). Some simple numerical examples illustrate this convergence behaviour in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Phys. 205, 719–936 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast and oblivious convolution quadrature in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. López-Fernandez, M., Palencia, C., Schädle, A.: A spectral order method for inverting sectorial Laplace transforms. SIAM J. Numer. Anal. 44, 1332–1350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. McLean, W., Thomée, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. (2008, in press)

  7. McLean, W., Thomée, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. (2008, in press)

  8. McLean, W., Thomée, V., Wahlbin, L.B.: Discretization with variable time steps of an evolution equation with a positive-type memory term. J. Comput. Appl. Math. 69, 49–69 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. (2008, in press)

  10. Schädle, A., López-Fernandez, M., Lubich, C.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William McLean.

Additional information

We thank the University of New South Wales for financial support provided by a Faculty Research Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McLean, W., Mustapha, K. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer Algor 52, 69–88 (2009). https://doi.org/10.1007/s11075-008-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9258-8

Keywords

Navigation