Skip to main content
Log in

On the stability of some second order numerical methods for weak approximation of Itô SDEs

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we first investigate the stability of two weak second order methods introduced by Debrabant and Rößler (Appl Numer Math 59:582–594, 2009) and Platen (Math Comput Simulation 38:69–76, 1995). We then propose a new weak second order predictor-corrector method, with an improved stability properties, based on the Rößler’s method as the predictor and the implicit method of Platen as the corrector. The stability functions of these methods, applied to a scalar linear test equation with multiplicative noise, are determined and their regions of stability are then compared with the corresponding stability regions of the test equation. Furthermore, we also investigate mean square stability (MS-stability) of these methods applied to a linear Itô 2-dimensional stochastic differential test equation. Numerical examples will be presented to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foroush Bastani, A., Hosseini, S.M.: A new adaptive Runge Kutta method for stochastic differential equations. J. Comput. Appl. Math. 206, 631–644 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burrage, K., Burrage, P.M., Mitsui, T.: Numerical solutions of stochastic differential equations- implementation and stability issues. J. Comput. Appl. Math. 125, 171–182 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burrage, K., Tian, T.H.: Stiffly accurate Runge Kutta methods for stiff stochastic differential equations. Comput. Phys. Commun. 142, 186–190 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Debrabant, K., Rößler, A.: Families of efficient second order Runge Kutta methods for the weak approximation of Itô stochastic differential equations. Appl. Numer. Math. 59, 582–594 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Debrabant, K., Rößler, A.: Diagonally drift-implicit Runge Kutta methods of weak order one and two for Itô SDEs and stability analysis. Appl. Numer. Math. 59, 595–607 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hernandez, D.B., Spigler, R.: Convergence and stability of implicit Runge Kutta methods for systems with multiplicative noise. BIT 33(4), 654–669 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. Edu. Sect. 43, 525–546 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hofmann, N., Platen, E.: Stability of weak numerical schemes for stochastic differential equations. Comput Math. Appl. 28(10–12), 45–57 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Applications of Mathematics, vol. 23. Springer, Berlin (1999)

    Google Scholar 

  11. Komori, Y., Mitsui, T.: Stable ROW-type weak scheme for stochastic differential equations. Monte Carlo Methods Appl. 1(4), 279–300 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lewis, D.W.: Matrix Theory. World Scientific New Jersey, Singapore (1991)

    MATH  Google Scholar 

  13. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer, Dordrecht (1995)

    Google Scholar 

  14. Milstein, G.N., Platen, E., Schurz, H.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Petersen, W.P.: A general implicit splitting for stabilizing numerical simulations of Itô stochastic differential equations. SIAM. J. Numer. Anal. 35, 1439–1451 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Platen, E.: On weak implicit and predictor-corrector methods. Math. Comput. Simulation 38, 69–76 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rößler, A.: Second order Runge Kutta methods for Itô stochastic differential equations. Preprint No. 2479, Technische Universität Darmstadt (2006)

  18. Rößler, A.: Second order Runge Kutta methods for Stratonovich stochastic differential equations. BIT 47(3), 657–680 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33(6), 2254–2267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Saito, Y., Mitsui, T.: Mean-square stability of numerical schemes for stochastic differential systems. In: International Conference on Scientific Computation and Differential Equations, July 29–August 3, 2001. Vancouver, British Columbia, Canada (2001)

  21. Tian, T.H., Burrage, K.: Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 38, 167–185 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Valinejad, A., Hosseini, S.M.: A variable step-size control algorithm for the weak approximations of stochastic differential equations. Numer. Algorithms (2010). doi:10.1007/s11075-010-9363-3

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, A., Hosseini, S.M. On the stability of some second order numerical methods for weak approximation of Itô SDEs. Numer Algor 57, 101–124 (2011). https://doi.org/10.1007/s11075-010-9417-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9417-6

Keywords

Navigation