Skip to main content
Log in

On a general new class of quasi Chebyshevian splines

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We prove that a general class of splines with sections in different Extended Chebyshev spaces or in different quasi Extended Chebyshev spaces can be viewed as quasi Chebyshevian splines, that is, as splines with all sections in a single convenient quasi Extended Chebyshev space. As a result, we can affirm the presence of blossoms in the corresponding spline spaces, with all the important consequences inherent in blossoms, namely, the possibility of developing all design algorithms for splines, the existence of B-splines bases, along with their optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bister, D., Prautzsch, H.: A New Approach to Tchebycheffian B-Splines in Curves and Surfaces with Applications in CAGD. Vanderbilt University Press, pp. 35–41 (1997)

  2. Bosner, T.: Knot Insertion Algorithms for Chebyshev Splines. PhD thesis, Dept of Maths, University of Zagreb (2006)

  3. Bosner, T., Rogina, M.: Non-uniform exponential tension splines. Numer. Algorithms 46, 265–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosner, T., Rogina, M.: Variable Degree Polynomial Splines are Chebyshev splines. Preprint

  5. Carnicer, J.-M., Peña, J.-M.: Total positivity and optimal bases. In: Gasca, M., Micchelli, C.A. (eds.) Total Positivity and its Applications, pp. 133–155. Kluwer, Norwell (1996)

    Google Scholar 

  6. Costantini, P.: On monotone and convex spline interpolation. Math. Comput. 46, 203–214 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costantini, P.: Curve and surface construction using variable degree polynomial splines. Comput. Aided Geom. Des. 17, 419–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costantini, P., Lyche, T., Manni, C.: On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman, T.N.T.: Shape preserving representations. In: Lyche, T., Schumaker, L.L. (eds.) Mathematical Methods in Computer Aided Geometric Design, pp. 333–357. Academic, NY (1989)

    Google Scholar 

  10. Goodman, T.N.T., Mazure, M.-L.: Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48-81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaklis, P.D., Pandelis, D.G.: Convexity preserving polynomial splines of non-uniform degree. IMA J. Numer. Anal. 10, 223–234 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaklis, P.D., Sapidis, N.S.: Convexity preserving interpolatory parametric splines of nonuniform polynomial degree. Comput. Aided Geom. Des. 12, 1–26 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karlin, S.J., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Wiley Interscience, New York (1966)

    MATH  Google Scholar 

  14. Koch, P.E., Lyche, T.: Exponential B-splines in tension. In: Chui, C.K., Schumaker, L.L., Ward, J.D. (eds.) Approximation Theory VI, pp. 361–364. Academic, New York (1989)

    Google Scholar 

  15. Koch, P.E., Lyche, T.: Construction of exponential tension B-splines of arbitrary order. In: Laurent, P.-J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 255–258. Academic, Boston (1991)

    Google Scholar 

  16. Kulkarni, R., Laurent, P.-J.: Q-splines. Numer. Algorithms 1, 45–73 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kvasov, B.: Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  18. Lyche, T.: A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–178 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lyche, T., Schumaker, L.L.: Total Positivity Properties of LB-splines. In: Gasca, M., Micchelli, C. (eds.) Total Positivity and its Applications, pp. 35–46. Kluwer, Dordrecht (1996)

    Google Scholar 

  20. Lyche, T., Mazure, M.-L.: Total positivity and the existence of piecewise exponential B-splines. Adv. Comput. Math. 25, 105–133 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mainar, E., Peña, J.-M.: A general class of Bernstein-like bases. Comput. Math. Appl. 53, 1686–1703 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazure, M.-L.: Blossoming: a geometrical approach. Constr. Approx. 15, 33–68 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mazure, M.-L.: Chebyshev splines beyond total positivity. Adv. Comput. Math. 14, 129–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mazure, M.-L.: Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines. Comput. Aided Geom. Des. 18, 287–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mazure, M.-L.: On the equivalence between existence of B-spline bases and existence of blossoms. Constr. Approx. 20, 603–624 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mazure, M.-L.: Blossoms and optimal bases. Adv. Comp. Math. 20, 177–203 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mazure, M.-L.: Chebyshev spaces and Bernstein bases. Constr. Approx. 22, 347–363 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazure, M.-L.: Which spaces for design. Numer. Math. 110, 357–392 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mazure, M.-L.: On differentiation formulæ for Chebyshevian Bernstein and B-spline bases. Jaén J. Approx. 1, 111–143 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Mazure, M.-L.: Quasi Extended Chebyshev spaces and weight functions. Numer. Math. 118, 79–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pottmann, H.: The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10, 181–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pottmann, H., Wagner, M.G.: Helix splines as an example of affine Tchebycheffian splines. Adv. Comput.Math. 2, 123–142 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pruess, S.: Properties of splines in tension. J. Approx. Theory 17, 86–96 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Renka, R.J.: Interpolatory tension splines with automatic selection of tension factors. SIAM J. Sci. Stat. Comput. 8, 393–415 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schumaker, L.L.: Spline Functions. Wiley Interscience, New York (1981)

    MATH  Google Scholar 

  36. Schweikert, D.G.: An interpolation curve using a spline in tension. J. Math. Phys. 45, 312–317 (1966)

    MathSciNet  MATH  Google Scholar 

  37. Späth, H.: Exponential spline interpolation. Computing 4, 225–233 (1969)

    Article  MATH  Google Scholar 

  38. Wang, G., Chen, Q., Zhou, M.: NUAT B-spline curves. Comput. Aided Geom. Des. 21, 193–205 (2004)

    Article  Google Scholar 

  39. Wang, G., Li, Y.: Optimal properties of the uniform algebraic trigonometric B-splines. Comput. Aided Geom. Des. 23, 226–238 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Laurence Mazure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazure, ML. On a general new class of quasi Chebyshevian splines. Numer Algor 58, 399–438 (2011). https://doi.org/10.1007/s11075-011-9461-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9461-x

Keywords

Mathematics Subject Classifications (2010)

Navigation