Skip to main content
Log in

An adaptive algorithm for the Thomas–Fermi equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A free boundary value problem is introduced to approximate the original Thomas–Fermi equation. The unknown truncated free boundary is determined iteratively. We transform the free boundary value problem to a nonlinear boundary value problem defined on [0,1]. We present an adaptive algorithm to solve the problem by means of the moving mesh finite element method. Comparison of our numerical results with those obtained by other approaches shows high accuracy of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)

    Article  MATH  Google Scholar 

  2. Fermi, E.: Un metodo statistico par la determinzione di alcune Proprietá dell’atome. Rend. Accad. Naz. del Lincei, Cl. Sci. Fis. Mat. Nat. 6, 602–607 (1927)

    Google Scholar 

  3. Di Grezia, E., Esposito, S.: Fermi, Majorana and the statistical model of atoms. Found. Phys. 34, 1431–1450 (2004)

    Article  MATH  Google Scholar 

  4. Kobayashi, S., Matsukuma, T., Nagai, S., Umeda, K.: Some coefficients of the TFD function. J. Phys. Soc. Jpn. 10, 759–765 (1955)

    Article  Google Scholar 

  5. Iacono, R.: An exact result for the Thomas–Fermi equation: a priori bounds for the potential slope at the origin. J. Phys. A: Math. Theor. 41, 455204 (7pp) (2008)

    Article  MathSciNet  Google Scholar 

  6. Bender, C.M., Milton, K.A., Pinsky, S.S., Simmons, L.M.: A new perturbative approach to nonlinear problems. J. Math. Phys. 30, 1447–1455 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cedillo, A.: A perturbative solution to the Thomas–Fermi equation in terms of the density. J. Math. Phys. 34, 2713–2717 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Laurenzi, B.J.: An analytic solution to the Thomas–Fermi equation. J. Math. Phys. 31, 2535–2537 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández, F.M., Ogilvie, J.F.: Approximate solutions to the Thomas–Fermi equation. Phys. Rev. A 42, 149–154 (1990)

    Article  Google Scholar 

  10. Adomian, G.: Solution of the Thomas–Fermi equation. Appl. Math. Lett. 11, 131–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M.: The modified decomposition method and Padé approximants for solving the Thomas–Fermi equation. Appl. Math. Comput. 105, 11–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Andrainov, I.V., Awrejcewicz, J.: Quasifractional approximants for matching small and large δ approaches. Phys. Lett. A 319, 53–59 (2003)

    Article  MathSciNet  Google Scholar 

  13. Liao, S.J.: An explicit analytic solution to the Thomas–Fermi equation. Appl. Math. Comput. 144, 495–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, S.J.: Beyond Perturbation-Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC, Boca Raton (2003)

    Book  Google Scholar 

  15. Khan, H., Xu, H.: Series solution to the Thomas–Fermi equation. Phys. Lett. A 365, 111–115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yao, B.H.: A series solution to the Thomas–Fermi equation. Appl. Math. Comput. 203, 396–401 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ramos, J.I.: Piecewise-adaptive decomposition methods. Chaos, Solitons Fractals 40, 1623–1636 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Desaix, M., Anderson, D., Lisak, M.: Variational approach to the Thomas–Fermi equation. Eur. J. Phys. 25, 699–705 (2004)

    Article  Google Scholar 

  19. Mandelzweig, V.B., Tabakin, F.: Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput. Phys. Commun. 141, 268–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ramos, J.I.: Piecewise quasilinearization techniques for singular boundary-value problems. Comput. Phys. Commun. 158, 12–25 (2004)

    Article  MATH  Google Scholar 

  21. Parand, K., Shahini, M.: Rational Chebyshev pseudospectral approach for solving Thomas–Fermi equation. Phys. Lett. A 373, 210–213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fazio, R.: A novel approach to the numerical solution of boundary value problems on infinite intervals. SIAM J. Numer. Anal. 33, 1473–1483 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, S., Wu, Q., Cheng, X.: Numerical solution of the Falkner–Skan equation based on quasilinearization. Appl. Math. Comput. 215, 2472–2485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fazio, R.: A survey on free boundary identification of the truncated boundary in numerical BVPs on infinite intervals. J. Comput. Appl. Math. 140, 331–344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDEs) based upon the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, K., Ping, L., Ong, M.T., Tan, R.C.E.: A splitting moving mesh method for reaction-diffusion equations of quenching type. J. Comput. Phys. 215, 757–777 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, H., Li, R., Tang, T.: Efficient computation of dendritic growth with r-adaptive finite element methods. J. Comput. Phys. 227, 5984–6000 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. de Boor, C.: Good approximation by splines with variable knots II. In: Springer Lecture Notes Series, vol. 363. Springer, Berlin (1973)

    Google Scholar 

  29. Kopteva, N., Stynes, M.: A robust adaptive method for a quasi-linear one-dimensional convection-diffusion problem. SIAM J. Numer. Anal. 39, 1446–1467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Zhu, H., Wu, Q. et al. An adaptive algorithm for the Thomas–Fermi equation. Numer Algor 59, 359–372 (2012). https://doi.org/10.1007/s11075-011-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9494-1

Keywords

Navigation