Skip to main content
Log in

An improved spectral homotopy analysis method for MHD flow in a semi-porous channel

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we report on a novel method for solving systems of highly nonlinear differential equations by blending two recent semi-numerical techniques; the spectral homotopy analysis method and the successive linearisation method. The hybrid method converges rapidly and is an enhancement of the utility of the original spectral homotopy analysis method (Motsa et al., Commun Nonlinear Sci Numer Simul 15:2293–2302, 2010; Computer & Fluids 39:1219–1225, 2010) and an improvement on other recent semi-analytical techniques. We illustrate the application of the method by solving a system of nonlinear differential equations that govern the problem of laminar viscous flow in a semi-porous channel subject to a transverse magnetic field. A comparison with the numerical solution confirms the validity and accuracy of the technique and shows that the method converges rapidly and gives very accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy, S.: Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method. Appl. Math. Comput. 145, 887–893 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abbasbandy, S.: The application of homotopy analysis method to solve a generalized HirotaSatsuma coupled KdV equation. Phys. Lett. A 361, 478–483 (2007)

    Article  MATH  Google Scholar 

  3. Abbasbandy, S., Shivanian, E.: Multiple solutions of mixed convection in a porous medium on semi-infinte interval using pseudo-spectral collocation method. Commun. Nonlinear Sci. Numer. Simul. 16, 2745–2752 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abbaoui, K., Cherruault, Y.: Convergence of Adomian’s method applied to non-linear equations. Math. Comput. Model. 20, 69–73 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdulaziz, O., Hashim, I., Saif, A.: Series solutions of time-fractional PDEs by homotopy analysis method, differential equations and nonlinear mechanics, vol. 2008, Article ID 686512. doi:10.1155/2008/686512 (2008)

  6. Adomian, G.: Nonlinear stochastic differential equations. J Math. Anal. Appl. 55, 441–452 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rafiq, A., Javeria, A.: New iterative methods for solving nonlinear equations by using the modified homotopy perturbation method. Acta Univ. Apulensis 18, 129–137 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Awad, F.G., Sibanda, P., Motsa, S.S., Makinde, O.D.: Convection from an inverted cone in a porous medium with cross-diffusion effects. Comput. Math. Appl. 61, 1431–1441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Babolian, E., Biazar, J.: Solution of non-linear equations by modified Adomian decomposition method. Appl. Math. Comput. 132, 167–172 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Babolian, E., Biazar, J., Vahidi, A.R.: On the decomposition method for system of linear equations and system of linear Volterra integral equations. Appl. Math. Comput. 147, 19–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Modified homotopy analysis method for solving systems of second-order BVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 430–442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: On a new reliable modification of homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 409–423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    MATH  Google Scholar 

  15. Chen, X., L, Zheng, Zhang, X.: Convergence of the homotopy decomposition method for solving nonlinear equations. Adv. Dyn. Syst. Appl. 2(1), 59–64 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Cherruault, Y.: Convergence of Adomian’s method. Kybernetes 18, 31–38 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Desseaux, A.: Influence of a magnetic field over a laminar viscous flow in a semi-porous channel. Int. J. Eng. Sci. 37, 1781–1794 (1999)

    Article  MATH  Google Scholar 

  18. Don, W.S., Solomonoff, A.: Accuracy and speed in computing the Chebyshev Collocation Derivative. SIAM J. Sci. Comput. 16(6), 1253–1268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ganji, D.D., Nourollahi, M., Rostamian, M.: A comparison of variational iteration method with Adomian’s decompostion method in some highly nonlinear equations. Int. J. Sci. Technol. 2(2), 179–188 (2007)

    Google Scholar 

  20. Golbabaia, A., Javidi, M.: Application of homotopy perturbation method for solving eighth-order boundary value problems. Appl. Math. Comput. 191, 334–346 (2007)

    Article  MathSciNet  Google Scholar 

  21. He, J.H.: Variational iteration method: a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34(4), 699–708 (1999)

    Article  MATH  Google Scholar 

  22. He, J.H.: Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput. 114(2–3), 115–123 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178, 257–262 (1999)

    Article  MATH  Google Scholar 

  24. He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-linear Mech. 35, 37–43 (2000)

    Article  MATH  Google Scholar 

  25. Liao, S.J.: The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Shanghai Jiao Tong University (1992)

  26. Karmishin, A.M., Zhukov, A.I., Kolsov, V.G.: Methods of Dynamics Calculation and Testing for Thin-walled Structures. Mashinostroyenie, Moscow (1990)

    Google Scholar 

  27. Kierzenka, J., Shampine, L.: A BVP solver based on residual control and the Matlab PSE. ACM Trans. Math. Softw. 27, 299–316 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liao, S.J.: Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman & Hall/CRC Press (2003)

  29. Liao, S.J.: Comparison between the homotopy analysis method and the homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  31. Liao, S.J.: Notes on the homotopy analysis method: Some definitions and theores. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J.L.: Adomian’s decomposition method and homotopy perturbation method in solving nonlinear equations. J. Comput. Appl. Math. 228, 168–173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liang, S., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun. Nonlinear Sci. Numer. Simul. 14, 4057–4064 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liang, S., Jeffrey, D.J.: An efficient analytical approach for solving fourth order boundary value problems. Comput. Phys. Commun. 180, 2034–2040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makukula, Z., Sibanda, P., Motsa, S.S.: A note on the solution of the Von Kármán equations using series and Chebyshev spectral methods. BVP 2010, Article ID 471793, 1–17 (2010). doi:10.1155/2010/471793

    Google Scholar 

  37. Makukula, Z., Sibanda, P., Motsa, S.S.: A novel numerical technique for two-dimensional Laminar flow between two moving porous walls. Math. Probl. Eng. 2010, Article ID 528956, 1–15 (2010). doi:10.1155/2010/528956

    Article  MathSciNet  Google Scholar 

  38. Makukula, Z.G., Sibanda, P., Motsa, S.S.: On new solutions for heat transfer in a visco-elastic fluid between parallel plates. M3AS 4(4), 221–230 (2010)

    MathSciNet  Google Scholar 

  39. Makukula, Z., Motsa, S.S., Sibanda, P.: On a new solution for the viscoelastic squeezing flow between two parallel plates. JARAM 2, 31–38 (2010)

    Article  MathSciNet  Google Scholar 

  40. Chun-Mei, C., Gao, F.: A few numerical methods for solving nonlinear equations. Int. Math. Forum 3(29), 1437–1443 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Motsa, S.S., Sibanda, P., Shateyi, S.: A new spectral-homotopy analysis method for solving a nonlinear second order BVP. Commun. Nonlinear Sci. Numer. Simul. 15, 2293–2302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Motsa, S.S., Sibanda, P., Awad, F.G., Shateyi, S.: A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem. Comp. Fluid. 39, 1219–1225 (2010)

    Article  MathSciNet  Google Scholar 

  43. Motsa, S.S., Sibanda, P.: On the solution of MHD flow over a nonlinear stretching sheet by an efficient semi-analytical technique. Int. J. Numer. Methods Fluids doi:10.1002/fld.2541

  44. Motsa, S.S., Shateyi, S.: A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet. Math. Probl. Eng. 2010, Article ID 586340, 1–15 (2010). doi:10.1155/2010/586340

    Google Scholar 

  45. Motsa, S.S., Shateyi, S.: Successive linearisation solution of free convection non-Darcy flow with heat and mass transfer. In: El-Amin, M. (ed.) Advanced Topics in Mass Transfer, pp. 425–438. InTech Open Access Publishers (2011)

  46. Mohyud-Din, S.T., Noor, M.A.: Homotopy perturbation method and pad approximants for solving Flierl-Petviashivili equation. Appl. Appl. Math. 3(2), 224–234 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Osterle, J.F., J Young, F.: Natural convection between heated vertical plates in a horizontal magnetic field. J. Fluid Mech. 11, 512–518 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sajida, M., Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal.: Real World Appl. 9, 2296–2301 (2008)

    Article  MathSciNet  Google Scholar 

  49. Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  50. Shateyi, S., Motsa, S.S.: Variable viscosity on magnetohydrodynamic fluid flow and heat transfer over an unsteady stretching surface with Hall effect. BVP 2010, Article ID 257568, 1–20 (2010). doi:10.1155/2010/257568

    Google Scholar 

  51. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM (2000)

  52. Umavathi, J.C.: A note on magnetoconvection in a vertical enclosure. Int. J. Non-Linear Mech. 31(3), 371–376 (1996)

    Article  MATH  Google Scholar 

  53. Wu, T.M.: A new formula of solving nonlinear equations by Adomian and homotopy methods. Appl. Math. Comput. 172, 903–907 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, T.M.: A study of convergence on the Newton-homotopy continuation method. Appl. Math. Comput. 168, 1169–1174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yildirim, A.: Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Comput. Math. Appl. 56, 3175–3180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ziabakhsh, Z., Domairry, G.: Solution of the laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field by using the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1284–1294 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanford Shateyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motsa, S.S., Shateyi, S., Marewo, G.T. et al. An improved spectral homotopy analysis method for MHD flow in a semi-porous channel. Numer Algor 60, 463–481 (2012). https://doi.org/10.1007/s11075-011-9523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9523-0

Keywords

Navigation