Skip to main content
Log in

Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with a three-level alternating direction implicit (ADI) method for the numerical solution of a 3D hyperbolic equation. Stability criterion of this ADI method is given by using von Neumann method. Meanwhile, it is shown by a discrete energy method that it can achieve fourth-order accuracy in both time and space with respect to H 1- and L 2-norms only if stable condition is satisfied. It only needs solution of a tri-diagonal system at each time step, which can be solved by multiple applications of one-dimensional tri-diagonal algorithm. Numerical experiments confirming the high accuracy and efficiency of the new algorithm are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jordan, P.M., Meyer, M.R., Puri, A.: Causal implications of viscous damping in compressible fluid flows. Phys Rev. E 62, 7918–7926 (2000)

    Article  Google Scholar 

  2. Jordan, P.M., Puri, A.: Digital signal propagation in dispersive media. J. Appl. Phys. 85, 1273–1282 (1999)

    Article  Google Scholar 

  3. Orsingher, E.: A planar random motion governed by the two-dimensional telegraph equation. J. Appl. Probab. 23, 385–397 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Mawhin, J., Ortega, R., Robles-Perez, A.M.: Maximum principles for bounded solutions of the telegraph equation in space dimensions two and three and applications. J. Differ. Equ. 208, 42–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ortega, R., Robles-Perez, A.M.: A maximum principle for periodic solutions of the telegraph equation. J. Math. Anal. Appl. 221, 625–651 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differ. Equ. 24, 1080–1093 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Mohebbi, A.: High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation. Numer. Methods Partial Differ. Equ. 25, 232–243 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan, M., Ghesmati, A.: Combination of meshless local weak and strong (MLWS) forms to solve the two dimensional hyperbolic telegraph equation. Eng. Anal. Bound. Elem. 34, 324–336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, D.J., Bulut, H.: The numerical solution of the telegraph equation by the alternating group explicit (AGE) method. Int. J. Comput. Math. 80, 1289–1297 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, L.B., Liu, H.W.: Quartic spline methods for solving one-dimensional telegraphic equations. Appl. Math. Comput. 216, 951–958 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, F., Chi, C.M.: Unconditionally stable difference schemes for a one-space-dimensional linear hyperbolic equation. Appl. Math. Comput. 187, 1272–1276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mickens, R.E., Jordan, P.M.: A positivity-preserving non-standard finite difference scheme for the damped wave equation. Numer. Methods Partial Differ Equ. 20, 639–649 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mohanty, R.K., Jain, M.K.: An unconditionally stable alternating direction implicit scheme for the two space dimensional linear hyperbolic equation. Numer. Methods Partial Differ. Equ. 17, 684–688 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mohanty, R.K., Jain, M.K., Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions. Int. J. Comput. Math. 79, 133–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karaa, S.: Unconditionally stable ADI scheme of high–order for linear hyperbolic equations. Int. J. Comput. Math. 87, 3030–3038 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohanty, R.K.: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. Int. J. Comput. Math. 86, 2061–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, J.M., Tang, K.M.: A new unconditionally stable ADI compact scheme for the two-space-dimensional linear hyperbolic equation. Int. J. Comput. Math. 87, 2259–2267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, H.F., Zhang, Y.X.: A new unconditionally stable compact difference scheme of \(\mathcal {O}(\tau^{2}+h^{4})\) for the 1D linear hyperbolic equation. Appl. Math. Comput. 207, 236–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ding, H.F., Zhang, Y.X.: A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation. J. Comput. Appl. Math. 72, 626–632 (2009)

    Article  MathSciNet  Google Scholar 

  20. Deng, D.W., Zhang, C.J.: Application of a fourth-order compact ADI method to solve two-dimensional linear hyperbolic equation (under review)

  21. Gao, Z., Xie, S.S.: Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional schrödinger equations. Appl. Numer. Math. 61, 593–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lele, R.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dai, W.Z., Nassar, R.: A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale. J. Comput. Appl. Math. 132, 431–441 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai, W.Z., Nassar, R.: A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film. Numer. Methods Partial Differ. Equ. 16, 441–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Deng, D.W., Zhang, Z.Y.: A new high-order algorithm for a class of nonlinear evolution equation. J. Phys. A: Math. Theor. 41, 015202 (2008)

    Article  MathSciNet  Google Scholar 

  26. Liao, H.L., Sun Z.Z.: Maximum norm error estimates of efficient difference schemes for second-order wave equations. J. Comput. Appl. Math. 235, 2217–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjian Zhang.

Additional information

This work is supported by NSFC (Nos. 11171125, 91130003), HSF ( No. 2011CDB289) and SRF of NHU (No. Ec200907255).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, D., Zhang, C. Analysis of a fourth-order compact ADI method for a linear hyperbolic equation with three spatial variables. Numer Algor 63, 1–26 (2013). https://doi.org/10.1007/s11075-012-9604-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9604-8

Keywords

Navigation