Skip to main content
Log in

Improved sparse fourier approximation results: faster implementations and stronger guarantees

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the problem of quickly estimating the best k-term Fourier representation for a given periodic function f: [0, 2π] → ℂ. Solving this problem requires the identification of k of the largest magnitude Fourier series coefficients of f in worst case k 2 · logO(1) N time. Randomized sublinear-time Monte Carlo algorithms, which have a small probability of failing to output accurate answers for each input signal, have been developed for solving this problem (Gilbert et al. 2002, 2005). These methods were implemented as the Ann Arbor Fast Fourier Transform (AAFFT) and empirically evaluated in Iwen et al. (Commun Math Sci 5(4):981–998, 2007). In this paper we present a new implementation, called the Gopher Fast Fourier Transform (GFFT), of more recently developed sparse Fourier transform techniques (Iwen, Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012). Experiments indicate that GFFT is faster than AAFFT. In addition to our empirical evaluation, we also consider the existence of sublinear-time Fourier approximation methods with deterministic approximation guarantees for functions whose sequences of Fourier series coefficents are compressible. In particular, we prove the existence of sublinear-time Las Vegas Fourier Transforms which improve on the recent deterministic Fourier approximation results of Iwen (Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012) for Fourier compressible functions by guaranteeing accurate answers while using an asymptotically near-optimal number of function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akavia, A.: Deterministic sparse fourier approximation via fooling arithmetic progressions. In: 23rd Conference on Learning Theory (2010)

  2. Akavia, A., Goldwasser, S., Safra, S.: Proving hard-core predicates using list decoding. In: Annual Symposium on Foundations of Computer Science, vol. 44, pp. 146–159 (2003)

  3. Bailey, J., Iwen, M.A., Spencer, C.V.: On the design of deterministic matrices for fast recovery of fourier compressible functions. SIAM J. Matrix Anal. Appl. 33(1), 263–289 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  6. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Brooks/Cole (1992)

  10. Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211–231 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sensing. In: Structural Information and Communication Complexity, pp. 280–294 (2006)

  13. Daubechies, I., Runborg, O., Zou, J.: A sparse spectral method for homogenization multiscale problems. Multiscale Model. Simul. 6(3), 711‒740 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dutt, A., Rokhlin, V.: Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput. 14, 1368–1383 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frigo, M., Johnson, S.: The design and implementation of fftw3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  17. Gilbert, A., Guha, S., Indyk, P., Muthukrishnan, S., Strauss, M.: Near-optimal sparse Fourier estimation via sampling. In: ACM STOC, pp. 152–161 (2002)

  18. Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-optimal sparse Fourier representations. In: Proceedings of SPIE Wavelets XI (2005)

  19. Gilbert, A., Strauss, M., Tropp, J.: A tutorial on fast fourier sampling. IEEE Signal Process. Mag. 25(2), 57–66 (2008)

    Article  Google Scholar 

  20. Gilbert, A.C., Strauss, M.J., Tropp, J.A., Vershynin, R.: One sketch for all: fast algorithms for compressed sensing. In: Proc. 39th ACM Symp. Theory of Computing (2007)

  21. Iwen, M.A.: Combinatorial sublinear-time fourier algorithms. Found. Comput. Math. 10(3), 303–338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. (2012). doi:10.1016/j.acha.2012.03.007

    MATH  Google Scholar 

  23. Iwen, M.A., Gilbert, A.C., Strauss, M.J.: Empirical evaluation of a sub-linear time sparse DFT algorithm. Commun. Math. Sci. 5(4), 981–998 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Kirolos, S., Laska, J., Wakin, M., Duarte, M., Baron, D., Ragheb, T., Massoud, Y., Baraniuk, R.: Analog-to-information conversion via random demodulation. In: Proc. IEEE Dallas Circuits and Systems Conference (2006)

  25. Kunis, S., Rauhut, H.: Random sampling of sparse trigonometric polynomials II—orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8(6), 737–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum. SICOMP 22(6), 1331–1348 (1993)

    MathSciNet  MATH  Google Scholar 

  27. Laska, J., Kirolos, S., Massoud, Y., Baraniuk, R., Gilbert, A., Iwen, M., Strauss, M.: Random sampling for analog-to-information conversion of wideband signals. In: Proc. IEEE Dallas Circuits and Systems Conference (2006)

  28. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  29. Mallat, S.: A Wavelet Tour of Signal Processing. Academic, New York (2003)

    Google Scholar 

  30. Mansour, Y.: Learning Boolean functions via the Fourier transform. In: Theoretical Advances in Neural Computation and Learning, pp. 391–424 (1994)

  31. Mansour, Y.: Randomized approxmation and interpolation of sparse polynomials. SIAM J. Comput. 24(2), 357–368 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9, 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Needell, D., Vershynin, R.: Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Topics Signal Process. 4(2), 310–316 (2010)

    Article  Google Scholar 

  35. Rauhut, H.: Compressive sensing and structured random matrices. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, pp. 1–92. Radon Series Comp. Appl. Math., vol. 9. de Gruyter, Berlin (2010)

    Google Scholar 

  36. Rudelson, M., Vershynin, R.: Sparse reconstruction by convex relaxation: Fourier and gaussian measurements. In: 40th Annual Conference on Information Sciences and Systems (CISS) (2006)

  37. Tropp, J., Gilbert, A.: Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Iwen.

Additional information

Research supported in part by ONR N00014-07-1-0625 and NSF DMS-0847388.

Ben Segal died unexpectedly at the age of 23 in January 2012, after graduating from the University of Minnesota the previous May with degrees in both mathematics and economics. He was a talented, curious, and enthusiastic student who loved mathematics for its innate beauty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, B., Iwen, M.A. Improved sparse fourier approximation results: faster implementations and stronger guarantees. Numer Algor 63, 239–263 (2013). https://doi.org/10.1007/s11075-012-9621-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9621-7

Keywords

Navigation