Skip to main content
Log in

A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The gradient sampling (GS) algorithm for minimizing a nonconvex, nonsmooth function was proposed by Burke et al. (SIAM J Optim 15:751–779, 2005), whose most interesting feature is the use of randomly sampled gradients instead of subgradients. In this paper, combining the GS technique with the sequential quadratic programming (SQP) method, we present a feasible SQP-GS algorithm that extends the GS algorithm to nonconvex, nonsmooth constrained optimization. The proposed algorithm generates a sequence of feasible iterates, and guarantees that the objective function is monotonically decreasing. Global convergence is proved in the sense that, with probability one, every cluster point of the iterative sequence is stationary for the improvement function. Finally, some preliminary numerical results show that the proposed algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 22, 474–500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burke, J.V., Lewis, A.S., Overton, M.L.: Two numerical methods for optimizing matrix stability. Linear Algebra Appl. 351/352, 147–184 (2002)

    Article  MathSciNet  Google Scholar 

  3. Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15, 751–779 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program 13, 14–22 (1977)

    Article  MATH  Google Scholar 

  5. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1985)

    Google Scholar 

  6. Sagastizábal, C.A., Solodov, M.V.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16, 146–169 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18, 379–388 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kiwiel, K.C.: A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 20, 1983–1994 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Curtis, F.E., Que, X.: An adaptive gradient sampling algorithm for nonsmooth optimization. Optim. Method Softw. (2012). doi:10.1080/10556788.2012.714781

    Google Scholar 

  10. Burke, J.V., Lewis, A.S., Overton, M.L.: Pseudospectral components and the distance to uncontrollability. SIAM J. Matrix Anal. Appl. 26, 350–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lewis, A.S.: Local structure and algorithms in nonsmooth optimization. Optimization and Applications, Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Germany (2005)

  12. Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numerica, pp. 1–51. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  13. Schittkowski, K., Yuan, Y.X.: Sequential quadratic programming methods. Wiley encyclopedia of operations research and management science. (2011). doi:10.1002/9780470400531.eorms0984

  14. Karmitsa, N., Tanaka Filho, M., Herskovits, J.: Globally convergent cutting plane method for nonconvex nonsmooth minimization. J. Optim. Theory Appl. 148, 528–549 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Herskovits, J., Freire, W.P., Tanaka Filho, M., Canelas, A.: A feasible directions method for nonsmooth convex optimization. Struct. Multidisc. Optim. 44, 363–377 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Panier, E.R., Tits, A.L.: A superlinearly convergent feasible method for the solution of inequality constrained optimization problems. SIAM J. Control Optim. 25, 934–950 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Panier, E.R., Tits, A.L.: On combining feasibility, descent and superlinear convergence in inequality constrained optimization.Math. Program. 59, 261–276 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lawarence, C.T., Tits, A.L.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11, 1092–1118 (2001)

    Article  MathSciNet  Google Scholar 

  19. Jian, J.B.: New sequential quadratically constrained quadratic programming norm-relaxed method of feasible directions. J. Optim. Theory Appl. 129, 109–130 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jian, J.B., Tang, C.M., Hu, Q.J., Zheng, H.Y.: A new superlinearly convergent strongly sub-feasible sequential quadratic programming algorithm for inequality-constrained optimization. Numer. Funct. Anal. Optim. 29, 376–409 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jian, J.B., Tang, C.M., Zheng, H.Y.: Sequential quadratically constrained quadratic programming algorithm of strongly sub-feasible directions. Eur. J. Oper. Res. 200, 645–657 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tang, C.M., Jian, J.B.: Strongly sub-feasible direction method for constrained optimization problems with nonsmooth objective functions. Eur. J. Oper. Res. 218, 28–37 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Polak, E., Trahan, R., Mayne, D.Q.: Combined phase I-phase II methods of feasible directions. Math. Program. 17, 61–73 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Clarke, F.H.: Optimization and Nonsmooth Analysis. Willey, New York (1983)

    MATH  Google Scholar 

  25. Byrd, R.H., Lopez-Calva, G., Nocedal, J.: A line search exact penalty method using steering rules. Math. Program. 133, 39–73 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Han, S.P., Mangasarian, O.L.: Exact penalty functions in nonlinear programming. Math. Program. 17, 251–269 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Asaadi, J.: A computational comparison of nonlinear programs. Math. Program. 4, 144–154 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  28. Rustem, B., Nguyen, Q.: An algorithm for the inequality-constrained discrete minimax problem. SIAM J. Optim. 8, 265–283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karmitsa, N.: Test problems for large-scale nonsmooth minimization. Reports of the Department of Mathematical Information Technology, Series B, Scientific computing, No. B 4/2007. University of Jyväskylä. Jyväskylä (2007)

  30. Mosek ApS: The MOSEK optimization toolbox for MATLAB manual. Version 6.0, http://www.mosek.com/

  31. Kuntsevich, A., Kappel, F.: SolvOpt—The solver for local nonlinear optimization problems: Matlab, C and Fortran source codes. Institute for Mathematics, Karl-Franzens University of Graz. http://www.uni-graz.at/imawww/kuntsevich/solvopt/ (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-bao Jian.

Additional information

Project supported by the National Natural Science Foundation (No. 11271086), Tianyuan Fund for Mathematics (No. 11126341), Innovation Group of Talents Highland of Guangxi Higher School, and Science Foundation of Guangxi Education Department (No. 201102ZD002) of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Cm., Liu, S., Jian, Jb. et al. A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization. Numer Algor 65, 1–22 (2014). https://doi.org/10.1007/s11075-012-9692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9692-5

Keywords

Mathematics Subject Classifications (2010)

Navigation