Skip to main content
Log in

A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the local convergence of Chebyshev-Halley-type methods of convergence order at least five to approximate a locally unique solution of a nonlinear equation. Earlier studies such as Behl (2013), Bruns and Bailey (Chem. Eng. Sci 32, 257–264, 1977), Candela and Marquina (Computing 44, 169–184, 1990), (Computing 45(4):355–367, 1990), Chicharro et al. (2013), Chun (Appl. Math. Comput, 190(2):1432–1437, 1990), Cordero et al. (Appl.Math. Lett. 26, 842–848, 2013), Cordero et al. (Appl. Math. Comput. 219, 8568–8583, 2013), Cordero and Torregrosa (Appl. Math. Comput. 190, 686–698, 2007), Ezquerro and Hernández (Appl. Math. Optim. 41(2):227–236, 2000), (BIT Numer. Math. 49, 325–342, 2009), (J. Math. Anal. Appl. 303, 591–601, 2005), Gutiérrez and Hernández (Comput. Math. Applic. 36(7):1–8, 1998), Ganesh and Joshi (IMA J. Numer. Anal. 11, 21–31, 1991), Hernández (Comput. Math. Applic. 41(3–4):433–455, 2001), Hernández and Salanova (Southwest J. Pure Appl. Math. 1, 29–40, 1999), Jarratt (Math. Comput. 20(95):434–437, 1996), Kou and Li (Appl. Math. Comput. 189, 1816–1821, 2007), Li (Appl. Math. Comput. 235, 221–225, 2014), Ren et al. (Numer. Algorithm. 52(4):585–603, 2009), Wang et al. (Numer. Algorithm. 57, 441–456, 2011), Kou et al. (Numer. Algorithm. 60, 369–390, 2012) show convergence under hypotheses on the third derivative or even higher. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamical analyses of these methods are also studied. Finally, numerical examples are also provided to show that our results apply to solve equations in cases where earlier studies cannot apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S.: Plaza, Dynamics of the King and Jarratt iterations. Aequationes Math. 69(3), 212–223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amat, S., Busquier, S.: Plaza, Chaotic dynamics of a third-order Newton-type method. J. Math. Anal. Appl. 366(1), 24–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amat, M.A., Hernández, N., Romero, A.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206(1), 164–174 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: Convergence and Application of Newton-type Iterations. Springer (2008)

  5. Argyros, I.K, Hilout, S.: Numerical methods in Nonlinear Analysis. World Scientific Publ. Comp, New Jersey (2013)

    Google Scholar 

  6. Behl, R.: Development and analysis of some new iterative methods for numerical solutions of nonlinear equations (PhD Thesis). Punjab University (2013)

  7. Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci 32, 257–264 (1977)

    Article  Google Scholar 

  8. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: The Halley method. Computing 169–184, 44 (1990)

    Google Scholar 

  9. Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: The Chebyshev method. Computing 45(4), 355–367 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. The Scientific World Journal Volume Article ID 780153 (2013)

  11. Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl Math. Comput 190(2), 1432–1437 (1990)

    Article  MathSciNet  Google Scholar 

  12. Cordero, A., García-Maimó, J., Torregrosa, J.R., Vassileva, M.P., Vindel, P.: Chaos in King’s iterative family. Appl. Math. Lett. 26, 842–848 (2013)

  13. Cordero, A., Torregrosa, J.R., Vindel, P.: Dynamics of a family of Chebyshev-Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ezquerro, J. A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41(2), 227–236 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ezquerro, J. A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)

    Article  MATH  Google Scholar 

  17. Ezquerro, J. A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Applic. 36(7), 1–8 (1998)

    Article  MATH  Google Scholar 

  19. Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equations of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Applic. 41(3-4), 433–455 (2001)

    Article  MATH  Google Scholar 

  21. Hernández, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999)

    MATH  Google Scholar 

  22. Jarratt, P.: Some fourth order multipoint methods for solving equations. Math. Comput. 20(95), 434–437 (1966)

    Article  MATH  Google Scholar 

  23. Kou, J., Li, Y.: An improvement of the Jarratt method. Appl. Math. Comput. 189, 1816–1821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, D., Liu, P., Kou, J.: An improvement of the Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)

    Article  MathSciNet  Google Scholar 

  25. Magreñán, Á. A.: Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)

    Article  MathSciNet  Google Scholar 

  26. Magreñán, Á.A.: A new tool to study real dynamics: The convergence plane. Appl. Math. Comput. 248, 215–224 (2014)

    Article  MathSciNet  Google Scholar 

  27. Parhi, S.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206(2), 873–887 (2007)

    Article  MathSciNet  Google Scholar 

  28. Rall, L.B.: Computational solution of nonlinear operator equations. In: Robert E. Krieger (ed.). New York (1979)

  29. Ren, H., Wu, Q., Bi, W.: New variants of Jarratt method with sixth-order convergence. Numer. Algorithm. 52(4), 585–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci., Banach. Ctr. Publ. 3, 129–142 (1978)

    MathSciNet  Google Scholar 

  31. Traub, J.F.: Iterative methods for the solution of equations. Prentice- Hall Series in Automatic Computation Englewood Cliffs, N. J. (1964)

  32. Wang, X., Kou, J., Gu, C.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithm. 57, 441–456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kou, J., Wang, X.: Semilocal convergence of a modified multi-point Jarratt method in Banach spaces under general continuity conditions. Numer. Algorithm. 60, 369–390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Á. Alberto Magreñán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argyros, I.K., Magreñán, Á.A. A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numer Algor 71, 1–23 (2016). https://doi.org/10.1007/s11075-015-9981-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9981-x

Keywords

Mathematics Subject Classification (2010)

Navigation