Skip to main content
Log in

New zero-finders for trust-region computations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Trust-region methods are among the most popular schemes for determining a local minimum of a nonlinear function in several variables. These methods approximate the nonlinear function by a quadratic polynomial, and a trust-region radius determines the size of the sphere in which the quadratic approximation of the nonlinear function is deemed to be accurate. The trust-region radius has to be computed repeatedly during the minimization process. Each trust-region radius is computed by determining a zero of a nonlinear function ψ(x). This is often done with Newton’s method or a variation thereof. These methods give quadratic convergence of the computed approximations of the trust-region radius. This paper describes a cubically convergent zero-finder that is based on the observation that the second derivative \(\psi ^{\prime \prime }(x)\) can be evaluated inexpensively when the first derivative \(\psi ^{\prime }(x)\) is known. Computed examples illustrate the performance of the zero-finder proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bentbib, A.H., El Guide, M., Jbilou, K., Reichel, L.: A global Lanczos method for image restoration. J. Comput. Appl. Math. 300, 233–244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calvetti, D., Reichel, L.: Gauss quadrature applied to trust region computations. Numer. Algorithm. 34, 85–102 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvetti, D., Reichel, L.: Tikhonov regularization with a solution constraint, SIAM. J. Sci. Comput. 26, 224–239 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  5. Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstraint optimization. SIAM, Philadelphia (1996)

    Book  Google Scholar 

  6. Gander, W.: Least squares with a quadratic constraint. Numer. Math. 36, 291–307 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gander, W., Golub, G.H., von Matt, U.: A constrained eigenvalue problem. In: Golub, G.H., Van Dooren, P. (eds.) Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, pp. 677–686. Springer, Berlin (1991)

  8. Golub, G.H., von Matt, U.: Quadratically constrained least squares and quadratic problems. Numer. Math. 59, 561–580 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Reinsch, C.H.: Smoothing by spline functions. Numer. Math. 10, 177–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Reinsch, C.H.: Smoothing by spline functions II. Numer. Math. 16, 451–454 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rojas, M., Sorensen, D.C.: A trust-region approach to regularization of large-scale discrete forms of ill-posed problems. SIAM J. Sci. Comput. 23, 1842–1860 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19, 409–426 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkilayh, M., Reichel, L. & Yuan, J.Y. New zero-finders for trust-region computations. Numer Algor 76, 361–375 (2017). https://doi.org/10.1007/s11075-016-0260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0260-2

Keywords

Navigation