Skip to main content
Log in

Bernstein polynomial basis for numerical solution of boundary value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a computational method for the approximate solution of linear and nonlinear two-point boundary value problems. In order to approximate the solution, the expansions in terms of the Bernstein polynomial basis have been used. The properties of the Bernstein polynomial basis and the corresponding operational matrices of integration and product are utilized to reduce the given boundary value problem to a system of algebraic equations for the unknown expansion coefficients of the solution. On this approach, the problem can be solved as a system of algebraic equations. By considering a special case of the problem, an error analysis is given for the approximate solution obtained by the present method. At last, five examples are examined in order to illustrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Killingbeck, J.: Shooting methods for the Schrodinger equation. J. Phys. A 20, 1411–1417 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Everitt, W.N., Kwon, K.H., Littlejohn, L.L., Wellman, R.: Orthogonal polynomial solutions of linear ordinary differential equations. J. Comput. Appl. Math. 133, 85–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liang, S., Jeffrey, D.J.: An analytical approach for solving nonlinear boundary value problems in finite domains. Numer. Algorithm. 56, 93–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Li, X.-L.: Approximate solution of linear ordinary differential equations with variable coefficients. Math. Comput. Simul. 75, 113–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auzinger, W., Koch, O., Weinmüller, E.: Efficient collocation schemes for singular boundary value problems. Numer. Algorithm. 31, 5–25 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhatti, M., Bracken, P.: Solutions of differential equations in a Bernstein polynomials basis. J. Comput. Appl. Math. 205, 272–280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costabile, F., Napoli, A.: A new spectral method for a class of linear boundary value problems. J. Comput. Appl. Math. 292, 329–341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1, 9–19 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Driscoll, T.A., Hale, N., Trefethen, L.N. (eds.): Chebfun guide. Pafnuty Publications, Oxford (2014)

  10. Chen, C.F., Hsiao, C.H.: A Walsh series direct method for solving variational problems. J. Franklin Inst. 300, 265–280 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gu, J.S., Jiang, W.S.: The Haar wavelets operational matrix of integration. Internat. J. Syst. Sci. 27, 623–628 (1996)

    Article  MATH  Google Scholar 

  12. Horng, I.R., Chou, J.H.: Shifted Chebyshev direct method for solving variational problems. Internat. J. Syst. Sci. 16, 855–861 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Razzaghi, M., Razzaghi, M.: Fourier series direct method for variational problems. Internat. J. Control 48, 887–895 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, R.Y., Wang, M.L.: Shifted Legendre direct method for variational problems. J. Optim. Theory Appl. 30, 299–307 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Razzaghi, M., Yousefi, S.: Sine-cosine wavelets operational matrix of integration and its applications in the calculus of variations. Internat. J. Syst. Sci. 33, 805–810 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marzban, H.R., Tabrizidooz, H.R., Razzaghi, M.: Hybrid functions for nonlinear initial-value problems with applications to Lane-Emden type equations. Phys. Lett. A 372, 5883–5886 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K Peters, Wellesley (1993)

    MATH  Google Scholar 

  18. Lorentz, G.G.: Bernstein Polynomials. Toronto Press, Toronto (1953)

    MATH  Google Scholar 

  19. Jüttler, B.: The dual basis functions for the Bernstein polynomials. Adv. Comput. Math. 8, 345–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yousefi, S.A., Behroozifar, M.: Operational matrices of Bernstein polynomials and their applications. Internat. J. Syst. Sci. 41, 709–716 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rivlin, T.J.: An Introduction to the Approximation of Functions. Blaisdell Publishing Co., Massachusetts (1969)

    MATH  Google Scholar 

  22. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1966)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Tabrizidooz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabrizidooz, H.R., Shabanpanah, K. Bernstein polynomial basis for numerical solution of boundary value problems. Numer Algor 77, 211–228 (2018). https://doi.org/10.1007/s11075-017-0311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0311-3

Keywords

Mathematics Subject Classification (2010)

Navigation