Skip to main content
Log in

Analysis of a new finite difference/local discontinuous Galerkin method for the fractional Cattaneo equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we first present a new finite difference scheme to approximate the time fractional derivatives, which is defined in the sense of Caputo, and give a semidiscrete scheme in time with the truncation error O((Δt)3−α), where Δt is the time step size. Then a fully discrete scheme based on the semidiscrete scheme for the fractional Cattaneo equation in which the space direction is approximated by a local discontinuous Galerkin method is presented and analyzed. We prove that the method is unconditionally stable and convergent with order O(h k+1 + (Δt)3−α), where k is the degree of piecewise polynomial. Numerical examples are also given to confirm the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basu, T.S., Wang, H.: A fast second-order finite difference method for space-fractional diffusion equations. Int. J. Numer. Anal. Model. 9, 658–666 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Carella, A.R., Dorao, C.A.: Least-squares spectral method for the solution of a fractional advection-dispersion equation. J. Comput. Phys. 232, 33–45 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, W., Ye, L., Sun, H.: Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 59, 1614–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Zhang, J., Zhang, J.: A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. 16, 76–92 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Cui, M.R.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A: Math. Gen. 30, 7277–7289 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding, H.F., Li, C.P.: Mixed spline function method for reaction-subdiffusion equation. J. Comput. Phys. 242, 103–123 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ervin, V.J., Heuer, N., Roop, J.P.: Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation. SIAM J. Numer. Anal. 45, 572–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fix, G., Roop, J.: Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, C., Yu, X., Wang, C., Li, Z., An, N.: A numerical method based on fully discrete direct discontinuous Galerkin method for the time fractional diffusion equation. Appl. Math. Comput. 264, 483–492 (2015)

    MathSciNet  Google Scholar 

  13. Gao, G.H., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. He, J.H., Wu, X.H.: Variational iteration method: New development and applications. Comput. Math. Appl. 54, 881–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hilfer, R. (ed.): Applications of fractional calculus in physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  16. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier, Amsterdam, The Netherlands (2006)

    MATH  Google Scholar 

  19. Kiryakova, V.: Generalized fractional calculus and applications. Longman & Wiley, Harlow-N. York (1994)

    MATH  Google Scholar 

  20. Kiryakova, V.: All the special functions are fractional differintegrals of elementary functions. J. Phys. A: Math. Gen. 30, 5085–5103 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiryakova, V.: Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms. Fract. Calc. Appl. Anal. 2, 445–462 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Kiryakova, V.: Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl. Math. 118, 241–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kiryakova, V.: The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math. Appl. 59, 1885–1895 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klages, R., Radons, G., Sokolov, I.M. (eds.): Anomalous transport: Foundations and applications. Elsevier, Amsterdam, The Netherlands (2008)

    Google Scholar 

  25. Kosztolowicz, T., Lewandowska, K.D.: Hyperbolic subdiffusive impedance. J. Phys. A: Math. Theor. 42, 055004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewandowskaw, K.D.: Application of generalized Cattaneo equation to model subdiffusion impedance. Acta. Phys. Pol. B 39, 1211–1220 (2008)

    Google Scholar 

  27. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, C.P., Zeng, F.H.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34, 149–179 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Metzler, R., Nonnenmacher, T.F.: Fractional diffusion, waiting-time distributions, and Cattaneo-type equations. Phys. Rev. E. 57, 6409–6414 (1998)

    Article  MathSciNet  Google Scholar 

  36. Momani, S., Odibat, Z.: Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54, 910–919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Podlubny, I.: Fractional differential equations, vol. 198. Academic Press, Calif, USA (1999)

    MATH  Google Scholar 

  38. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y.Q., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Povstenko, Y.: Fractional thermoelasticity. Springer, New York (2015)

    Book  MATH  Google Scholar 

  40. Sun, H.G., Chen, W., Sze, K.Y.: A semi-discrete finite element method for a class of time-fractional diffusion equations. Philos. Trans. R. Soc. A 371, 1471–2962 (2013)

    Article  MathSciNet  Google Scholar 

  41. Shao, L., Feng, X., He, Y.: The local discontinuous Galerkin finite element method for Burger’s equation. Math. Comput. Modell. 54, 2943–2954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, H., Wang, K.X., Sircar, T.: A direct O(N l o g 2 N) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34, 810–816 (2011)

    Article  Google Scholar 

  44. Wang, L., Zhou, X., Wei, X.: Heat conduction. Springer, Berlin (2008)

    MATH  Google Scholar 

  45. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Q.Q., Turner, I., Liu, F., Ilic, M.: Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, Q., Shu, C.-W.: Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data. Numer. Math. 126, 703–740 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhang, Q.: Third order explicit Runge-Kutta discontinuous Galerkin method for linear conservation law with inflow boundary condition. J. Sci. Comput. 46, 294–313 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, X., Tang, B., He, Y.: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62, 3194–3203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhao, X., Sun, Z.Z.: Compact crank-nicolson schemes for a class of fractional cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zheng, Y.Y., Li, C.P., Zhao, Z.G.: A note on the finite element method for the space fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wei, L.L., He, Y.N.: Analysis of the fractional Kawahara equation using an implicit fully discrete local discontinuous Galerkin method. Numer. Methods Partial Differ. Eq. 29, 1441–1458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wei, L.L., He, Y.N.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the High-Level Personal Foundation of Henan University of Technology (2013BS041), Plan For Scientific Innovation Talent of Henan University of Technology (2013CXRC12), and the National Natural Science Foundation of China (11461072, 11426090), Foundation of Henan Educational Committee (15A110018), and China Postdoctoral Science Foundation funded project (2015M572115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L. Analysis of a new finite difference/local discontinuous Galerkin method for the fractional Cattaneo equation. Numer Algor 77, 675–690 (2018). https://doi.org/10.1007/s11075-017-0334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0334-9

Keywords

Navigation