Skip to main content
Log in

Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We describe a two-parameter continuation algorithm for computing Bloch waves of Bose-Einstein condensates (BEC) in optical lattices which is governed by the Gross-Pitaevskii equation (GPE). The Fourier collocation method and fourth-order Adini’s elements with penalty are used to discretize the GPE. We propose two different approaches so that the two-parameter continuation algorithm can be modified to compute closed tubes at the four corners of the Bloch band. We also study linear stability analysis for the GPE. We show that all the discrete steady-state solutions are numerically neutrally stable. Numerical results show that the four edges of the Bloch waves are surrounded by closed loops if the coefficient of the cubic nonlinear term is greater than that of the periodic potential. Moreover, closed tubes at the four corners of the Bloch band are obtained. The numerical results display superfluidity of BEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cinti, F., Jain, P., Boninsegni, M., Micheli, A., Zoller, P., Pupillo, G.: Supersolid droplet crystal in a dipole-blockaded gas. Phys. Rev. Lett. 105, 135301 (2010)

    Article  Google Scholar 

  2. Henkel, N., Nath, R., Pohl, T.: Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010)

    Article  Google Scholar 

  3. Henkel, N., Cinti, F., Jain, P., Pupillo, G., Pohl, T.: Supersolid vortex crystals in Rydberg-dressed Bose-Einstein condensates. Phys. Rev. Lett. 108, 265301 (2012)

    Article  Google Scholar 

  4. Hsueh, C.-H., Lin, T.-C., Horng, T.-L., Wu, W.C.: Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate. Phys. Rev. A 86, 013619 (2012)

    Article  Google Scholar 

  5. Hsueh, C.-H., Tsai, Y.-C., Wu, K.-S., Chang, M.-S., Wu, W.C.: Pseudospin orders in the supersolid phases in binary Rydberg-dressed Bose-Einstein condensates. Phys. Rev. A 88, 043646 (2013)

    Article  Google Scholar 

  6. Sriburadet, S., Wang, Y.-S., Chien, C.-S., Shih, Y.: Pseudo-arclength continuation algorithms for binary Rydberg-dressed Bose-Einstein condensates. Commun. Comput. Phys. 19, 1067–1093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  8. Davis, K.B., Mewes, M.-O., Anderws, M.R., Van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

  9. Chen, Z., Wu, B.: Bose-Einstein condensate in a honeycomb optical lattice: fingerprint of superfluidity at the Dirac point. Phys. Rev. Lett. 107, 065301 (2011)

    Article  Google Scholar 

  10. Wu, B., Niu, Q.: Superfluidity of Bose-Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability. New J. Phys. 5, 104.1–104.24 (2003)

    Article  Google Scholar 

  11. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  Google Scholar 

  12. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Zh. Eksp. Teor. Fiz. 40, 646–651 (1961)

    Google Scholar 

  13. Yukalov, V.I., Yukalova, E.P., Bagnato, V.S.: Nonlinear coherent modes of trapped Bose-Einstein condensates. Phys. Rev. A 66, 043602 (2002)

    Article  Google Scholar 

  14. Wu, B., Niu, Q.: Nonlinear Landau-Zener tunneling. Phys. Rev. A 61, 023402 (2000)

    Article  Google Scholar 

  15. Wu, B., Niu, Q.: Landau and dynamical instabilities of the superflow of Bose-Einstein condensates in optical lattices. Phys. Rev. A 64, 061603(R) (2001)

    Article  Google Scholar 

  16. Diakonov, D., Jensen, L.M., Pethick, C.J., Smith, H.: Loop structure of the lowest Bloch band for a Bose-Einstein condensate. Phys. Rev. A 66, 013604 (2002)

    Article  Google Scholar 

  17. Chien, C.-S., Chang, S.-L., Wu, B.: Two-stage continuation algorithms for Bloch waves of Bose-Einstein condensates in optical lattices. Comput. Phys. Commun. 181, 1727–1737 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Babuška, I.: The finite element method with penalty. Math. Comput. 27, 221–228 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iooss, G., Adelmeyer, M.: : Topics in Bifurcation Theory and Applications, 2nd edn. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  20. Wu, K., Saad, Y., Stathopoulos, A.: Inexact Newton preconditioning techniques for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 7, 202–214 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Chen, H.-S., Chang, S.-L., Chien, C.-S.: Spectral collocation methods using sine functions for a rotating Bose-Einstein condensation in optical lattices. J. Comput. Phys. 231, 1553–1569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-W. Jeng.

Additional information

B.-W. Jeng was supported by the Ministry of Science and Technology of R.O.C. (Taiwan) through Project MOST 105-2115-M-142-003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HS., Chang, SL., Jeng, BW. et al. Continuation and stability analysis for Bloch waves of the Gross-Pitaevskii equation. Numer Algor 77, 709–726 (2018). https://doi.org/10.1007/s11075-017-0336-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0336-7

Keywords

Navigation