Skip to main content
Log in

Efficient numerical schemes for the solution of generalized time fractional Burgers type equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The main aim of this paper is to propose two semi-implicit Fourier pseudospectral schemes for the solution of generalized time fractional Burgers type equations, with an analysis of consistency, stability, and convergence. Under some assumptions, the unconditional stability of the schemes is shown. In implementation of these schemes, the fast Fourier transform (FFT) can be used efficiently to improve the computational cost. Various test problems are included to illustrate the results that we have obtained regarding the proposed schemes. The results of numerical experiments are compared with analytical solutions and other existing methods in the literature to show the efficiency of proposed schemes in both accuracy and CPU time. As numerical solution of fractional stochastic nonlinear partial differential equations driven by Brownian motions are among current related research interests, we report the performance of these schemes on stochastic time fractional Burgers equation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Salam, E.A.B., Hassan, G.F.: Multi-wave solutions of the space-time fractional Burgers and Sharma-Tasso-Olver equations. Ain Shams Eng. J. 7, 463–472 (2016)

    Article  Google Scholar 

  2. Abdel-Salam, E.A.B., Yousif, E.A., Arko, Y.A.S., Gumma, E.A.E.: Solution of moving boundary space-time fractional Burger’s equation. J. Appl. Math. 2014, Article ID 218092, 8 pages (2014)

    Article  MathSciNet  Google Scholar 

  3. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Roman. Rep. Phys. 67, 340–349 (2015)

    Google Scholar 

  4. Cameron, R.H., Martin, W.T.: The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Ann. Math. 48, 385–392 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, K., Feng, W., Gottlieb, S., Wang, C.: A Fourier pseudospectral method for the “Good” Boussinesq equation with second-order temporal accuracy. Numer. Methods Partial Differ. Eq. 31, 202–224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Eq. 26, 448–479 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Diethelm, K.: An algorithm for the numerical solution for differential equations of fractional order. Elec. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  9. W.E: Convergence of Fourier methods for Navier-Stokes equations. SIAM J. Numer. Anal. 30, 650–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. El-Danaf, T.S., Hadhoud, A.R.: Parametric spline functions for the solution of the one time fractional Burgers’ equation. Appl. Math. Modell. 36, 4557–4564 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers equation by cubic B-spline finite elements. Mediterr. J. Math. 13, 1325–1337 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Esen, A., Tasbozan, O.: Numerical solution of time fractional Burgers equation. Acta Univ. Sapientiae, Mathematica 7, 167–185 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Esen, A., Bulut, F., Oru, O.: A unified approach for the numerical solution of time fractional Burgers type equations. Eur. Phys. J. Plus 131, 116 (2016)

    Article  Google Scholar 

  14. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B.Y., Zou, J.: Fourier spectral projection method and nonlinear convergence analysis for Navier-Stokes equations. J. Math. Anal Appl. 282, 766–791 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo-Cheng, W.: Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation. Commun. Theor. Phys. 55, 1073–1076 (2011)

    Article  MATH  Google Scholar 

  17. Gupta, A.K., Saha Ray, S.: On the solutions of fractional Burgers-Fisher and generalized Fisher’s equations using two reliable methods. Int. J. Math. Math. Sci. 2014, Article ID 682910, 16 pages (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Inc, M.: The approximate and exact solutions of the space- and time-fractional burgers equation with initial conditions by variational iteration method. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36, 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B., Zhou, Z.: An analysis of the Galerkin proper orthogonal decomposition for subdiffusion, ESAIM: Math. Modeling Numer. Anal. (in press). arXiv:1508.06134tic

  21. Kalpinelli, E.A., Frangos, N.E., Yannacopoulos, A.N.: Numerical methods for hyperbolic SPDEs: a Wiener chaos approach. Stoch PDE Anal. Comp. 4, 606–633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kang, X., Cheng, K., Guo, C.: A second-order Fourier pseudospectral method for the generalized regularized long wave equation. Adv. Diff. Eq. 2015, 339 (2015)

    Article  MathSciNet  Google Scholar 

  23. Khan, N.A., Ara, A., Mahmood, A.: Numerical solutions of time-fractional Burger equations: a comparison between generalized transformation technique with homotopy perturbation method. Int. J. Num. Method Heat Fluid Flow 22, 175–93 (2012)

    Article  MathSciNet  Google Scholar 

  24. Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions. Appl. Math. Modell. 36, 605–617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Zhang, C., Ran, M.: A linear finite difference scheme for generalized time fractional Burgers equation. Appl. Math. Modell. 40, 6069–6081 (2016)

    Article  MathSciNet  Google Scholar 

  26. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lototsky, S., Rozovsky, B.: Stochastic differential equations: a Wiener chaos approach. In: Kabanov, Y., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, pp 433–507. Springer, Berlin (2006)

    Chapter  Google Scholar 

  28. Lue, W.: Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD Thesis, California Institute of Technology, Pasadena (2006)

  29. Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection-dispersion equation. Numer. Algor. 63, 431–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer Series in Computational Mathematics, vol. 23. Springer-Verlag (1994)

  31. Tadmor, E.: Convergence of spectral methods to nonlinear conservation laws. SIAM J. Numer. Anal. 26, 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tadmor, E.: The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1–10 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sahoo, S., SahaRay, S.: New approach to find exact solutions of time-fractional Kuramoto-Sivashinsky equation. Physica A 434, 240–245 (2015)

    Article  MathSciNet  Google Scholar 

  34. Song, L., Zhang, H.Q.: Application of homotopy analysis method to fractional KDV-Burgers-Kuramoto equation. Phys. Lett. A. 367, 88–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sugimoto, N.: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. J. Fluild Mech. 225, 631–653 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sugimoto, N.: Generalized Burgers equation and fractional calculus. In: Nonlinear wave motion. Longman Scientic and Technical (1989)

  37. Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, Q.: Numerical solutions for fractional kdv-burgers equation by adomian decomposition method. Appl. Math. Comput. 182(2), 1048–1055 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Asgari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, Z., Hosseini, S.M. Efficient numerical schemes for the solution of generalized time fractional Burgers type equations. Numer Algor 77, 763–792 (2018). https://doi.org/10.1007/s11075-017-0339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0339-4

Keywords

Navigation