Skip to main content
Log in

Galerkin-Legendre spectral schemes for nonlinear space fractional Schrödinger equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In the paper, we first propose a Crank-Nicolson Galerkin-Legendre (CN-GL) spectral scheme for the one-dimensional nonlinear space fractional Schrödinger equation. Convergence with spectral accuracy is proved for the spectral approximation. Further, a Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional nonlinear space fractional Schrödinger equation is developed. The proposed schemes are shown to be efficient with second-order accuracy in time and spectral accuracy in space which are higher than some recently studied methods. Moreover, some numerical results are demonstrated to justify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Herbst, B.M.: On homoclinic structure and numerically induced chaos for the nonlinear Schrdinger equation. SIAM J. Appl. Math. 50, 339–351 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59(1), 31–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential equations. Conference: 9Th Workshop SDS2016 STRUCTURAL DYNAMICAL SYSTEMS: Computational Aspects, At Hotel-Villaggio Porto Giardino, Italy (2016)

  4. Chen, S., Liu, F., Anh, V.: A novel implicit finite difference method for the one-dimensional fractional percolation equation. Numer. Algorithms 56, 517–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Pang, G.F.: A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J. Comput. Phys. 309, 350–367 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algorithms 72, 749–767 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fibich, G., Papanicolaou, G.: Self-focusing in the perturbed and unperturbed nonlinear schrödinger equation in critical dimension. SIAM J. Appl. Math. 60, 183–240 (1999)

    Article  MATH  Google Scholar 

  8. Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction difiusion system. SIAM J. Appl. Math. 62, 870–887 (2002)

    Article  MATH  Google Scholar 

  9. Hilfer, R.: Applications of fractional calculus in physics. World Scientific, London (2000)

    Book  MATH  Google Scholar 

  10. Huang, J.F., Nie, N.N., Tang, Y.F.: A second order finite difference-spectral method for space fractional diffusion equation. Science China Mathematics 136, 521–537 (2013)

    Google Scholar 

  11. Jiang, X.Y., Xu, M.Y., Qi, H.T.: The fractional diffusion model with an absorption term and modified ficks law for non-local transport processes. Nonlinear Analysis: Real World Applications 11(1), 262–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)

    Article  MATH  Google Scholar 

  13. Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Lenzi, E.K., de Oliveira, B.F., da Silva, L.R., Evangelista, L.R.: Solutions for a Schrödinger equation with a nonlocal term. J. Math. Phys. 49, 032108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, W.J., Sun, J.B., Wu, B.Y.: Galerkin-chebyshev spectral method and block boundary value methods for two-dimensional semilinear parabolic equations. Numer. Algorithms 71, 437–455 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999)

    Article  Google Scholar 

  19. Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370, 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  20. Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang, G.F., Perdikaris, P., Cai, W., Karniadakis, G.E.: Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization. J. Comput. Phys. 348, 694–714 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, 1st edn, vol. 198. Academic Press, New York (1999)

    MATH  Google Scholar 

  23. Ren, R., Li, H., Jiang, W., Song, M.: An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Appl. Math. Comput. 224, 259–267 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Ross, B.: Fractional calculus and its applications. Lecture Notes in Mathematics. Springer, Berlin (1975)

    Book  Google Scholar 

  25. Roop, J.P.: Variational solution of the fractional advection dispersion equation. Ph.D. Theis. Clemson University, South Carolina (2004)

    Google Scholar 

  26. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, D., Xiao, A., Yang, W.: Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang, Q.Q., Turner, I., Liu, F.W., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, H.P., Gao, G.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, M.L., Liu, F.W., Turner, I., Anh, A.V.: A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the editor for taking time to handle the manuscript and to anonymous referees whose constructive comments are very helpful for improving the quality of our paper. This work has been supported by the National Natural Science Foundation of China (Grants Nos. 11472161, 11771254, 11672163), and the Natural Science Foundation of Shandong Province (Grant ZR2015AM011, ZR2017MA030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, X., Wang, C. et al. Galerkin-Legendre spectral schemes for nonlinear space fractional Schrödinger equation. Numer Algor 79, 337–356 (2018). https://doi.org/10.1007/s11075-017-0439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0439-1

Keywords

Navigation