Skip to main content
Log in

Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a piecewise constant time-stepping discontinuous Galerkin method combined with a piecewise linear finite element method is applied to solve control constrained optimal control problem governed by time fractional diffusion equation. The control variable is approximated by variational discretization approach. The discrete first-order optimality condition is derived based on the first discretize then optimize approach. We demonstrate the commutativity of discretization and optimization for the time-stepping discontinuous Galerkin discretization. Since the state variable and the adjoint state variable in general have weak singularity near t = 0and t = T, a time adaptive algorithm is developed based on step doubling technique, which can be used to guide the time mesh refinement. Numerical examples are given to illustrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), 55–78 (2015)

    Article  MathSciNet  Google Scholar 

  2. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Zhang, Y. N., Sun, Z. Z., Liao, H. L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265(15), 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  4. Stynesy, M., O’riordan, E., Luis Gracia, J.: Error analysis of a finite difference method on graded meshes for a time fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057-1079 (2017)

    Article  MathSciNet  Google Scholar 

  5. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), 2976–3000 (2013)

    Article  MathSciNet  Google Scholar 

  6. Jin, B. T., Lazarov, R., Pasciak, J., Zhou, Z.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2015)

    Article  MathSciNet  Google Scholar 

  7. Jin, B. T., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional-order parabolic equations. SIAM J. Numer. Anal. 51 (1), 445–466 (2013)

    Article  MathSciNet  Google Scholar 

  8. Mustapha, K. A., Abdallah, B. S., Furati, K. M., Nour, M.: A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients. Numerical Algorithms. Accepted (2016)

  9. McLean, W., Mustapha, K.: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52, 69–88 (2009)

    Article  MathSciNet  Google Scholar 

  10. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y. M., Li, X. J., Xu, C. J.: Finite difference/spectral approximations for the fractional cable equation. Math. Comp. 80(275), 1369–1396 (2011)

    Article  MathSciNet  Google Scholar 

  12. Mclean, W.: Fast summation by interval clustering for an evolution equation with memory. SIAM J. Sci. Comput. 34, A3039–A3056 (2012)

    Article  MathSciNet  Google Scholar 

  13. Yuste, Santos B., Quintana-Murillo, J.: Fast, accurate and robust adaptive finite difference methods for fractional diffusion equations. Numerical Algorithms 71 (1), 207–228 (2016)

    Article  MathSciNet  Google Scholar 

  14. Liu, W. B., Yan, N. N.: Adaptive Finite Element Methods for Optimal Control Governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  15. Zhou, Z. J., Yu, X. M., Yan, N. N.: Local discontinuous galerkin approximation of convection-dominated diffusion optimal control problem with control constraints. Numer. Meth. Part. D. E. 30, 338–360 (2014)

    Article  MathSciNet  Google Scholar 

  16. Zhou, Z. J.: A posteriori error estimates for discontinuous Galerkin approximation of nonstationary convection diffusion optimal control problems. Int. J. Comput. Math. 93, 2106–2123 (2016)

    Article  MathSciNet  Google Scholar 

  17. Mophou, G.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)

    Article  MathSciNet  Google Scholar 

  18. Mophou, G., N’Guérékata, G.M.: Optimal control of fractional diffusion equation with state constraints. Comput. Math. Appl. 62, 1413–1426 (2011)

    Article  MathSciNet  Google Scholar 

  19. Sweilam, N. H., Al-Ajami, T. M., Hoppe, R. H. W.: Numerical solution of some types of fractional optimal control problems. Sci. World J. 2013, 9 (2013). Article ID 306237

    Article  Google Scholar 

  20. Ye, X. Y., Xu, C. J.: Spectral optimization methods for the time fractional diffusion inverse problem. Numer. Math. Theory Methods Appl. 6(3), 499–519 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Zhou, Z. J., Gong, W.: Finite element approximation of optimal control problems governed by time fractional diffusion equations. Comput. Math. Appl. 71, 301–308 (2016)

    Article  MathSciNet  Google Scholar 

  22. Du, N., Wang, H., Liu, W. B.: A fast gradient projection method for a constrained fractional optimal control. J. Sci. Comput. 68, 1–20 (2016)

    Article  MathSciNet  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academy Press, New York (1999)

    MATH  Google Scholar 

  24. Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  25. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM Journal 52, 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  26. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes: the Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    MATH  Google Scholar 

  27. Döfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  Google Scholar 

  28. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the support of National Natural Science Foundation of China (No. 11301311 and 11471196) and Natural Science Foundation of Shandong Province (No. ZR2016JL004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, C. Time-stepping discontinuous Galerkin approximation of optimal control problem governed by time fractional diffusion equation. Numer Algor 79, 437–455 (2018). https://doi.org/10.1007/s11075-017-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0445-3

Keywords

Mathematics Subject Classification (2010)

Navigation