Skip to main content
Log in

Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce a general iterative method for finding a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of split variational inclusion problem in the framework Hilbert spaces. Strong convergence theorem of the sequences generated by the purpose iterative scheme is obtained. In the last section, we present some computational examples to illustrate the assumptions of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, Y.J., Kang, S.M., Qin, X.: Some results on k-strictly pseudo-contractive mappings in Hilbert spaces. Nonlinear Anal. 70, 1956–1964 (2009)

    Article  MathSciNet  Google Scholar 

  2. Cho, Y.J., Qin, X.: Convergence of a general iterative method for nonexpansive mappings in Hilbert spaces. J. Comput. Appl. Math. 228, 458–465 (2009)

    Article  MathSciNet  Google Scholar 

  3. Deutsch, F., Yamada, I.: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings. Numer. Funct. Anal. Optim. 19, 33–56 (1998)

    Article  MathSciNet  Google Scholar 

  4. Marino, G., Xu, H.K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MathSciNet  Google Scholar 

  5. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings. Nonlinear Anal. 61, 341–350 (2005)

    Article  MathSciNet  Google Scholar 

  6. Yao, Y., Yao, J.C.: On modified iterative method for nonexpansive mappings and monotone mappings. Appl. Math. Comput. 186, 1551–1558 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Marino, G., Colao, V., Qin, X., Kang, S.M.: Strong convergence of the modified Mann iterative method for strict pseudo-contractions. Comput. Math. Appl. 57, 455–465 (2009)

    Article  MathSciNet  Google Scholar 

  8. Qin, X., Shang, M., Su, Y.: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Anal. 69, 3897–3909 (2008)

    Article  MathSciNet  Google Scholar 

  9. Qin, X., Shang, M., Su, Y.: Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems. Math. Comput. Model. 48, 1033–1046 (2008)

    Article  MathSciNet  Google Scholar 

  10. Xu, H.K.: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

  11. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theor. Appl. 116, 659–678 (2003)

    Article  MathSciNet  Google Scholar 

  12. Zhang, S.S., Lee, J.H.W., Chan, C.K.: Algorithms of common solutions for quasi variational inclusion and fixed point problems. Appl. Math. Mech. 29, 571–581 (2008)

    Article  MathSciNet  Google Scholar 

  13. Henry, S.: spinoffImage recovery Theory and Applications, p. 562. Academic Press, Orlando (1987)

    Google Scholar 

  14. Combettes, P.L.: The convex feasible problem in image recovery. In: Hawkes, P. (ed.) Advanced in Image and Electronphysics, vol. 95, pp. 155–270. Academic Press, New York (1996)

  15. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algor. 8(2–4), 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  16. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  17. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensitymodulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2003)

    Article  Google Scholar 

  18. López, G., Martín-Ḿarquez, V., Xu, H.K.: Iterative algorithms for the multiple-sets split feasibility problem. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical mathematics: promising directions in imaging, therapy planning and inverse problems, pp. 243–383. Medical Physics Publishing, Madison (2010)

  19. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  Google Scholar 

  20. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algor. 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  21. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse probl. 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  22. Byrne, C., Censor, Y., Gibali, A., Reich, S.: Weak and strong convergence of algorithms for the split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Kazmi, K.R., Rizvi, S.H.: An iterative method for split variational inclusion problem and fixed point problem for a nonexpansive mapping. Optim. Lett. 8, 1113–1124 (2014)

    Article  MathSciNet  Google Scholar 

  24. Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  25. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Prob. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  26. Xu, H.K.: Averaged mappings and the gradient-projection algorithm. J. Optim Theory Appl. 150, 360–378 (2011)

    Article  MathSciNet  Google Scholar 

  27. Shimoji, K., Takahashi, W.: Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwanese J. Math. 5(2), 387–404 (2001)

    Article  MathSciNet  Google Scholar 

  28. Moudafi, A.: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241(1), 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  29. Chang, S.S., Lee, H.W.J., Chan, C.K.: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307–3319 (2009)

    Article  MathSciNet  Google Scholar 

  30. Marino, G., Xu, H.K.: General iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MathSciNet  Google Scholar 

  31. Suzuki, T.: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227–239 (2005)

    Article  MathSciNet  Google Scholar 

  32. Opial, Z.: Weak convergence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73, 591–597 (1967)

    Article  MathSciNet  Google Scholar 

  33. Geobel, K., Kirk, W.A.: Topics in metric fixed point theory, Cambridge studies in advanced Mathematics, vol. 28. Cambridge University Press (1990)

  34. Petryshyn, W.V.: On a general iterative method for the approximate solution of linear operator equations. Math. Comp. 17, 1–10 (1963)

    Article  MathSciNet  Google Scholar 

  35. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  Google Scholar 

  36. Yamada, I.: The hybrid steepest descent method for the variational inequality problems over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu, D., Censor, Y., Reich, S. (eds.) Inherently parallel algorithms in feasibility and optimization and their applications, Vol. 8 of studies in computational mathematics, pp 473–504, North-Holland (2001)

  37. Tian, M.: A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal. Theory, Methods Appl. 73(3), 689–694 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very thankful to the anonymous reviewers and editors for their careful reading of the manuscript and for their constructive reports, which have been very useful to improve the paper.

Funding

The authors acknowledge the financial support provided by King Mongkut’s University of Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund”; also, this project was supported by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart Innovation Cluster (CLASSIC), Faculty of Science, KMUTT. Furthermore, the first author was supported by the Office of the Higher Education Commission (OHEC) and Thailand Research Fund (TRF) (Grant No.MRG6080123). Finally, Dr. Poom Kumam was supported by the Thailand Research Fund and the King Mongkut’s University of Technology Thonburi under the TRF Research Scholar Grant No.RSA6080047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitthithakerngkiet, K., Deepho, J., Martínez-Moreno, J. et al. Convergence analysis of a general iterative algorithm for finding a common solution of split variational inclusion and optimization problems. Numer Algor 79, 801–824 (2018). https://doi.org/10.1007/s11075-017-0462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-017-0462-2

Keywords

Mathematics Subject Classification (2010)

Navigation