Skip to main content
Log in

Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For computing the smallest eigenvalue and the corresponding eigenvector of a Hermitian matrix, by introducing a concept of perfect Krylov subspace, we propose a class of perfect Krylov subspace methods. For these methods, we prove their local, semilocal, and global convergence properties, and discuss their inexact implementations and preconditioning strategies. In addition, we use numerical experiments to demonstrate the convergence properties and exhibit the competitiveness of these methods with a few state-of-the art iteration methods such as Lanczos, rational Krylov sequence, and Jacobi-Davidson, when they are employed to solve large and sparse Hermitian eigenvalue problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method. Linear Algebra Appl. 520, 215–241 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl. Math. Lett. 72, 23–28 (2017)

    Article  MathSciNet  Google Scholar 

  3. Berns-Müller, J., Graham, I.G., Spence, A.: Inexact inverse iteration for symmetric matrices. Linear Algebra Appl. 416, 389–413 (2006)

    Article  MathSciNet  Google Scholar 

  4. Druskin, V., Knizhnerman, L.: Extended Krylov subspaces: approximation of the matrix square root and related functions. SIAM J. Matrix Anal. Appl. 19, 755–771 (1998)

    Article  MathSciNet  Google Scholar 

  5. Freitag, M.A., Spence, A.: Convergence of inexact inverse iteration with application to preconditioned iterative solves. BIT 47, 27–44 (2007)

    Article  MathSciNet  Google Scholar 

  6. Freitag, M.A., Spence, A.: A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA J. Numer. Anal. 28, 522–551 (2008)

    Article  MathSciNet  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  8. Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM J. Sci. Copmut. 24, 312–334 (2002)

    Article  MathSciNet  Google Scholar 

  9. Jagels, C., Reichel, L.: The extended Krylov subspace method and orthogonal Laurent polynomials. Linear Algebra Appl. 431, 441–458 (2009)

    Article  MathSciNet  Google Scholar 

  10. Jagels, C., Reichel, L.: Recursion relations for the extended Krylov subspace method. Linear Algebra Appl. 434, 1716–1732 (2011)

    Article  MathSciNet  Google Scholar 

  11. Jones, M.T., Patrick, M.L.: Bunch-Kaufman factorization for real symmetric indefinite banded matrices. SIAM J. Matrix Anal. Appl. 14, 553–559 (1993)

    Article  MathSciNet  Google Scholar 

  12. Knizhnerman, L., Simoncini, V.: A new investigation of the extended Krylov subspace method for matrix function evaluations. Numer. Linear Algebra Appl. 17, 615–638 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Morgan, R.B., Scott, D.S.: Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J. Sci. Comput. 14, 585–593 (1993)

    Article  MathSciNet  Google Scholar 

  14. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  15. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  16. Ruhe, A.: Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 58, 391–405 (1984)

    Article  MathSciNet  Google Scholar 

  17. Ruhe, A.: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)

    Article  MathSciNet  Google Scholar 

  18. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, 2nd edn. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  19. Saad, Y.: On the rates of convergence of the Lanczos and the block-Lanczos methods. SIAM J. Numer. Anal. 17, 687–706 (1980)

    Article  MathSciNet  Google Scholar 

  20. Shank, S.D., Simoncini, V.: Krylov subspace methods for large-scale constrained Sylvester equations. SIAM J. Matrix Anal. Appl. 34, 1448–1463 (2013)

    Article  MathSciNet  Google Scholar 

  21. Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are very much indebted to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Zhi Bai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by The National Natural Science Foundation (No. 11671393) and The National Natural Science Foundation for Creative Research Groups (No. 11321061), People’s Republic of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZZ., Miao, CQ. Computing eigenpairs of Hermitian matrices in perfect Krylov subspaces. Numer Algor 82, 1251–1277 (2019). https://doi.org/10.1007/s11075-018-00653-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-00653-y

Keywords

Mathematics Subject Classification (2010)

Navigation