Skip to main content
Log in

On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with the numerical treatment of a recent diffuse interface model for two-phase flow of electrolyte solutions (Campillo-Funollet et al., SIAM J. Appl. Math. 72(6), 1899–1925, 2012) . This model consists of a Nernst–Planck-system describing the evolution of the ion densities and the electrostatic potential which is coupled to a Cahn–Hilliard–Navier–Stokes-system describing the evolution of phase-field, velocity field, and pressure. In the first part, we present a stable, fully discrete splitting scheme, which allows to split the governing equations into different blocks, which may be treated sequentially and thereby reduces the computational costs significantly. This scheme comprises different mechanisms to reduce the induced numerical dissipation. In the second part, we investigate the impact of these mechanisms on the scheme’s sensitivity to the size of the time increment using the example of a falling droplet. Finally, we shall present simulations showing ion induced changes in the topology of charged droplets serving as a qualitative validation for our discretization and the underlying model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Garcke, H., Grün, G.: Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Model. Methods Appl. Sci. 22(3), 1150013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aland, S., Boden, S., Hahn, A., Klingbeil, F., Weismann, M., Weller, S.: Quantitative comparison of Taylor flow simulations based on sharp-interface and diffuse-interface models. Int. J. Numer. Methods Fluids 73(4), 344–361 (2013)

    Article  Google Scholar 

  3. Armero, F., Simo, J.C.: Formulation of a new class of fractional-step methods for the incompressible MHD equations that retains the long-term dissipativity of the continuum dynamical system. Fields Inst Commun 10, 1–24 (1996)

    MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  5. Campillo-Funollet, E., Grün, G., Klingbeil, F.: On modeling and simulation of electrokinetic phenomena in two-phase flow with general mass densities. SIAM J. Appl. Math. 72(6), 1899–1925 (2012). https://doi.org/10.1137/120861333

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, Ph. G.: The finite element method for elliptic problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  7. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free Energy. Numer. Math. 63, 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eck, C., Fontelos, M.A., Grün, G., Klingbeil, F., Vantzos, O.: On a phase-field model for electrowetting. Interfaces Free Boundaries 11, 259–290 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fontelos, M.A., Grün, G., Jörres, S.: On a phase-field model for electrowetting and other electrokinetic phenomena. SIAM J. Math. Anal. 43(1), 527–563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grün, G.: Partiell gleichmäßige Konvergenz finiter Elemente bei quasikonvexen Variationsintegralen. Diploma Thesis (Universität Bonn), Bonn (1991)

    Google Scholar 

  11. Grün, G.: On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities. SIAM J. Numer. Anal. 6, 3036–3061 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grün, G., Guillén-González, F., Metzger, S.: On fully decoupled, convergent schemes for diffuse interface models for two-phase flow with general mass densities. Commun. Comput. Phys. 19(5), 1473–1502 (2016). https://doi.org/10.4208/cicp.scpde14.39s

    Article  MathSciNet  MATH  Google Scholar 

  13. Grün, G., Klingbeil, F.: Two-phase flow with mass density contrast: stable schemes for a thermodynamic consistent and frame-indifferent diffuse-interface model. J. Comput. Phys. 257, Part A, 708–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grün, G., Rumpf, M.: Nonnegativity preserving convergent schemes for the thin film equation. Numer. Math. 87, 113–152 (2000). MR 1800156 (2002h:76108)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guillén-González, F., Tierra, G.: Splitting schemes for a Navier–Stokes–Cahn–Hilliard model for two fluids with different densities. J. Comput. Math. 32(6), 643–664 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garcke, C., Kahle, H., Hinze, M.: A stable and linear time discretization for a thermodynamically consistent model for two-phase incompressible flow. Hamburger beiträge zur Angewandte Mathematik (2014)

  17. Klingbeil, F.: On the numerics of diffuse-interface models for two-phase flow with species transport. Ph.D. thesis, friedrich-alexander-universität erlangen-nürnberg, Erlangen (2014)

    Google Scholar 

  18. Metzger, S.: On numerical schemes for phase-field models for electrowetting with electrolyte solutions. PAMM 15(1), 715–718 (2015). https://doi.org/10.1002/pamm.201510346

    Article  Google Scholar 

  19. Metzger, S.: Diffuse interface models for complex flow scenarios: modeling, analysis and simulations. Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2017)

    MATH  Google Scholar 

  20. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier-Stokes model. Num. Methods PDE 29(2), 584–618 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nochetto, R.H., Salgado, A.J., Walker, S.W.: A diffuse interface model for electrowetting with moving contact lines. Math. Model Methods Appl. Sci. 24(1), 67–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qian, T., Wang, X., Sheng, P.: A variational approach to the moving contact line hydrodynamics. J. Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Werner, H., Arndt, H.: Gewöhnliche Differentialgleichungen. Springer, Berlin–Heidelberg (1991)

    Google Scholar 

Download references

Funding

This research has been supported by Deutsche Forschungsgemeinschaft (German Science Foundation) through the Priority Programme 1506 “Transport processes at fluidic interfaces”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Metzger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzger, S. On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions. Numer Algor 80, 1361–1390 (2019). https://doi.org/10.1007/s11075-018-0530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0530-2

Keywords

Mathematics Subject Classification (2010)

Navigation