Skip to main content
Log in

Second-order difference approximations for Volterra equations with the completely monotonic kernels

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The second-order difference type methods are studied for the solution of the problem

$$u^{\prime}(t)+{{\int}_{0}^{t}} (t-\tau)u (\tau)d\tau = 0 , t>0, u(0) = u_{0}, $$

with \( L(t)=\sum \limits _{j = 1}^{n} a_{j}(t) L_{j} \). The operators Lj are densely defined positive self-adjoint linear operator on a Hilbert space H and have spectral decompositions with respect to a common resolution of the identity {Eλ} in H. Here, the kernel functions aj(t), 1 ≤ jn, are completely monotonic on (0, ∞) and locally integrable, but not constant. The convergence properties of the time discretization are proven in the weighted \( l^{1}(\rho ;0,\infty ; \mathbf {H} ) \) and \( l^{\infty }(\rho ; 0, \infty ; \mathbf {H} ) \) norm, where ρ is a given weighted function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hannsgen, K.B., Wheeler, R.L.: Uniform L 1 behavior in classes of integrodifferential equations with completely monotonic kernels. SIAM J. Math. Anal. 15, 579–594 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hannsgen, K.B., Wheeler, R.L.: Complete monotonicity and resolvents of Volterra integro-differential equations. SIAM J. Math. Anal. 13, 962–969 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Da, X.: The time discretization in classes of integro-differential equations with completely monotonic kernels: weighted asymptotic stability. Science China Mathematics 56(2), 395–424 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Da, X.: The time discretization in classes of integro-differential equations with completely monotonic kernels: weighted asymptotic convergence. Numer. Methods Partial Differ. Equ. 32, 896–935 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Da, X.: Numerical asymptotic stability for the integro-differential equations with the multi-term kernels. Appl. Math. Comput. 309, 107–132 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Da, X.: Weighted l 1 Paley-Wiener Theorem, with applications to stability of the linear multi-step methods for Volterra equations in Hilbert spaces. J. Math. Anal. Appl. 389, 1006–1019 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Noren, R.D.: Uniform L 1 behavior in classes of integro-differential equations with convex kernels. J. Integral Equ. Appl. 1, 385–369 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Noren, R.D.: Uniform L 1 behavior in class of linear Volterra equations. Q. Appl. Math. XLVII, 547–554 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Charendon Press, Oxford (1959)

    MATH  Google Scholar 

  10. MacCamy, R.C.: An integro-differential equation with application in heat flow. Q. Appl. Math. 35, 1–19 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lubich, C.h.: Convolution quadrature and discretized operational calculus I. Numer. Math. 52, 129–145 (1988). MR 89g: 65018

    Article  MathSciNet  MATH  Google Scholar 

  12. Lubich, C.h.: Convolution quadrature revisited. BIT Numer. Math. 44, 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlquist, G.: A special stability problem for linear multi-step methods. BIT 3, 27–43 (1963)

    Article  MATH  Google Scholar 

  15. Cuesta, E., Lubich, C.h., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lubich, Ch, Sloan, I.H., Thomée, V: Non-smooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65, 1–17 (1996)

    Article  MATH  Google Scholar 

  17. Da, X.: The long time error analysis in the second order difference type method of an evolutionary integral equation with completely monotonic kernel. Adv. Comput. Math. 40, 881–922 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carr, R.W., Hannsgen, K.B.: A nonhomogeneous integro-differential equation in Hilbert space. SIAM J. Math. Anal. 10, 961–984 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carr, R.W., Hannsgen, K.B.: Resolvent formulas for a Volterra equation in Hilbert space. SIAM J. Math. Anal. 13, 459–483 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  20. Riesz, F., Szökefalvi-Nagy, B: Functional Analysis. Dover, New York (1990)

    Google Scholar 

  21. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Da, X.: Uniform l 1 behaviour for time discretization of a Volterra equation with completely monotonic kernel: I. Stability. IMA J. Numer. Anal. 22, 133–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Da, X.: Uniform l 1 behavior in the Crank-Nicolson method for a linear Volterra equation with convex kernel. Calcolo 51, 57–96 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mustapha, K., McLean, W.: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56(2), 159–184 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustapha, K.: An implicit finite-fifference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements. IMA J. Numer. Anal. 31(2), 719–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bazhlekova, E., Jin, B., Lazarov, R., Zhou, Z.: An analysis of the Rayleigh- Stokes problem for a generalized second-grade fluid. Numer. Math. 131, 1–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sanz-Serna, J.M.: A numerical method for a partial integro-differential equation. SIAM J. Numer. Anal. 25, 319–327 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lopez-Marcos, J.C.: A difference scheme for a nonlinear partial integro-differential equation. SIAM J. Numer. Anal. 27, 20–31 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, T.: A finite difference scheme for partial integro-differential equations with a weakly singular kernel. Appl. Numer. Math. 11, 309–319 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kim, C.H., Choi, U.J.: Spectral collocation methods for a partial integro-differential equation with a weakly singular kernel. J. Austral. Math. Soc. Ser. B. 30, 408–430 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Tang, J., Xu, D.: The global behavior of finite difference-spatial spectral collocation methods for a partial integro-differential equation with a weakly singular kernel. Numer. Math. Theor. Meth. Appl. 6, 556–570 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. McLean, W., Thomee, V.: Numerical solution of an evolution equation with a positive-type memory term. J. Austral. Math. Soc. Ser. B. 35, 23–70 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. McLean, W., Thomee, V.: Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24, 439–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. McLean, W., Thomee, V.: Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional order evolution equation. IMA J. Numer. Anal. 30, 208–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yi, Y., Fairweather, G.: Orthogonal spline collocation methods for some partial integro-differential equations. SIAM J. Numer. Anal. 29, 755–768 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fairweather, G.: Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J. Numer. Anal. 31, 444–460 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pani, A. K., Fairweather, G., Fernandes, R.I.: Alternating direction implicit orthogonal spline collocation methods for an evolution equation with a positive-type memory term. SIAM J. Numer. Anal. 46, 344–364 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mustapha, K., Schotzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. McLean, W., Thomee, V.: Numerical solution via Laplace transforms of a fractional order evolution equation. J. Integral Equ. Appl. 22, 57–94 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China, contract grant number 11671131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D. Second-order difference approximations for Volterra equations with the completely monotonic kernels. Numer Algor 81, 1003–1041 (2019). https://doi.org/10.1007/s11075-018-0580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0580-5

Keywords

Mathematics Subject Classification (2010)

Navigation