Skip to main content
Log in

A new algorithm for solving all the real roots of a nonlinear system of equations in a given feasible region

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The initiation of iterations and the encounters of all of its solutions are two of the main problems that are derived from iterative methods. These are produced within feasible regions where the problem lies. This paper provides an algorithm to solve both for the general case of nonlinear systems of p unknowns and q equations. Furthermore, some examples of this algorithm implementation are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S.: After notes on Chebyshev’s iterative method. Appl. Math. Nonlinear Sci. 2(1), 1–12 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balibrea, F., Guirao, J.L.G., Lampart, M., Llibre, J.: Dynamics of a Lotka-Volterra map. Fund. Math. 191, 265–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comp. 19(92), 577–593 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruns, D.D., Bailay, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

    Article  Google Scholar 

  5. Chun, C., Neta, B.: Some modification of Newton’s method by the method of undetermined coefficients. Comput. Math. Appl. 56(10), 2528–2538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Da, P.F., Wu, Q.B., Chan, M.H.: Modified newton-NSS method for solving systems of nonlinear equations. Numer. Algor. 77(1), 1–21 (2018)

    Article  MathSciNet  Google Scholar 

  7. Dennid, J.E., More, J.J.: Quasi-newton methods, motivations and theory. SIAM Rev. 19, 46–89 (1977)

    Article  MathSciNet  Google Scholar 

  8. Eriksson, J., Gulliksson, M.E.: Local results for the Gauss-Nreyon Method on constrained rank-deficient nonlinear least squares. Math. Comp. 73(248), 1865–1883 (2003)

    Article  MATH  Google Scholar 

  9. Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Chebyshev-like methods and quadratic equations. Rev. Anal. Numr. Thor. Approx. 28, 23–25 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Frontini, M., Sormani, E.: Third-order methods for quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771–782 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Galántai, A.: Always convergent methods for nonlinear equations of several variables. Numer. Algor. 78, 625–641 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guirao, J.L.G., Lampart, M.: Transitivity of a Lotka-Volterra map. Discrete Contin. Dyn. Syst.-ser B 9(1), 75–82 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Iliev, A., Kyurchiev, N.: Nonlinear Methods in Numerical Analysis: Selected Topics in Numerical Analysis. Lap Lambert Academic Publishing, Saarbrucken (2010)

    Google Scholar 

  14. Maličky̌, P.: Interior periodic points of a Lotka-Volterra map. J. Differ. Equations Appl. 18(4), 553–567 (2012)

    Article  MathSciNet  Google Scholar 

  15. Martínez, J.M.: Practical quasi-Newton methods for solving nonlinear systems. J. Comput. Appl. Math. 124, 97–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moreno, J., Saiz, A.: Inverse functions of polynomials and its applications to initialize the search of solutions of polynomials and polynomial systems. Numer. Algor. 58(2), 203–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moreno, J.: An infinite family of one-step iterators for solving nonlinear equations to increase the order of convergence and a new algorithm of global convergence. Comput. Math. Appl. 66, 1418–1436 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nuño, L., Balbastre, J.V., Rodríguez-Mattalia, S., Jódar, L.: An efficient homotopy continuation method for obtaining the fields in electromagnetic problems when using the MEF with curvilinear elements. In: Proceedings 7th International Conference on Finite Elements for Microwave Engineering Antennas, Circuits and Devices. Madrid (2004)

  19. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  20. Pérez, R., Rocha, V.L.: Recent applications and numerical implementation of quasi-Newton methods for solving nonlinear systems of equations. Numer. Algor. 35, 261–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rostamy, D., Bakhtiari, P.: New efficient multipoint iterative methods for solving nonlinear systems. Appl. Math. Comput. 266, 350–356 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Sharma, J.R., Gupta, P.: An efficient fifth order method for solving systems of nonlinear equations. Comput. Math. Appl. 67(3), 591–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Swirszcz, G.: On a certain map of the triangle. Fund. Math. 155(1), 45–57 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Zhang, Y., Huang, P.: High-precition time-interval measurement techniques and methods. Progress in Astronomy 24(1), 1–15 (2006)

    MathSciNet  Google Scholar 

Download references

Funding

This work has been partially supported by MINECO grant no. MTM2014-51891-P, Fundación Séneca de la Región de Murcia grant no. 19219/PI/14, and FEDER OP2014-2020 of Castilla-La Mancha (Spain) grant no. GI20173946.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Moreno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, J., López, M.A. & Martínez, R. A new algorithm for solving all the real roots of a nonlinear system of equations in a given feasible region. Numer Algor 82, 123–154 (2019). https://doi.org/10.1007/s11075-018-0596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0596-x

Keywords

Navigation