Skip to main content
Log in

Estimating convergence regions of Schröder’s iteration formula: how the Julia set shrinks to the Voronoi boundary

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Schröder’s iterative formula of the second kind (S2 formula) for finding zeros of a function f(z) is a generalization of Newton’s formula to an arbitrary order m of convergence. For iterative formulae, convergence regions of initial values to zeros in the complex plane z are essential. From numerical experiments, it is suggested that as order m of the S2 formula grows, the complicated fractal structure of the boundary of convergence regions gradually diminishes. We propose a method of estimating the convergence regions with the circles of Apollonius to verify this result for polynomials f(z) with simple zeros. We indeed show that as m grows, each region surrounded by the circles of Apollonius monotonically enlarges to the Voronoi cell of a zero of f(z). Numerical examples illustrate convergence regions for several values of m and some polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Plaza, S.: Review of some iterative root–finding methods from a dynamical point of view. Scientia 10, 3–35 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Aurenhammer, F.: Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

  3. Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. (N.S.) 11, 85–141 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buff, X., Henriksen, C.: On König’s root-finding algorithms. Nonlinearity 16, 989–1015 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Drakopoulos, V., Argyropoulos, N., Böhm, A.: Generalized computation of Schröder iteration functions to motivate families of Julia and Mandelbrot-like sets. SIAM J. Numer. Anal. 36, 417–435 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gautschi, W.: Numerical Analysis: an Introduction. Birkhäuser, Boston (1997)

    MATH  Google Scholar 

  7. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  8. Honorato, G.: On the Julia set of König’s root-finding algorithms. Proc. Amer. Math. Soc. 141, 3601–3607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Honorato, G.: Dynamics and limiting behavior of Julia set of König’s method for multiple roots. Topology Appl. 233, 16–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Householder, A.S.: Principle of Numerical Analysis. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  11. Kalantari, B.: Polynomiography and applications in art, education, and science. Comput. Graph. 28, 417–430 (2004)

    Article  Google Scholar 

  12. Kalantari, B.: Polynomial Root-finding and Polynomiography. World Scientific, New Jersey (2008)

    Book  MATH  Google Scholar 

  13. Kalantari, B.: Polynomial root-finding methods whose basins of attraction approximate Voronoi diagram. Discrete Comput. Geom. 46, 187–203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kalantari, B., Jin, Y.: On extraneous fixed-points of the basic family of iteration functions. BIT Numer. Math. 43, 453–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kalantari, B., Kalantari, I., Zaare-Nahandi, R.: A basic family of iteration functions for polynomial root finding and its characterizations. J. Comput. Appl. Math. 80, 209–226 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  17. Petković, M.S., Petković, L.D.: Dynamic study of Schröder’s families of first and second kind. Numer. Algorithms 78, 847–865 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petković, M.S., Petković, L.D., Herceg, D.: On Schröder’s families on root-finding methods. J. Comput. Appl. Math. 233, 1755–1762 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pomentale, T.: A class of iterative method for holomorphic function. Numer. Math. 18, 193–203 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schröder, E.: Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)

    Article  MathSciNet  Google Scholar 

  21. Schröder, E.: On Infinitely Many Algorithms for Solving Equations, Translated by G. W. Stewart. Tech. Rep., TR-92-121, Institute for Advanced Computer Studies, University of Maryland, College Park, MD (1992)

  22. Vrscay, E.R., Gilbert, W.J.: Extraneous fixed point, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions. Numer. Math. 52, 1–16 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank one of the referees for his valuable comments for improving the presentation of the manuscript. Further, we thank him for suggesting useful references including [12], a book that contains many impressive figures of convergence regions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Suzuki.

Appendix: Proof of Lemma 4.2

Appendix: Proof of Lemma 4.2

From (4.4) we have

$$ t=\tau(x)=\log(x/B)\big/\log(1-x). $$
(A.1)

In view of x ∈ (0,1) and t > 0, from (A.1) we have log(x/B) < 0. It follows that

$$0<x<B_{1}=\min\{1,B\},\quad\lim_{x\to0}\tau(x)=\infty,\quad \lim_{x\to B_{1}}\tau(x)= 0. $$

Since from (A.1) we have

$$\tau^{\prime}(x)=\{x^{-1}\log(1-x)+(1-x)^{-1}\log(x/B)\}\big/ \{\log(1-x)\}^{2}<0\quad(0<x<B_{1}), $$

τ(x) monotonically decreases on (0,B1). Therefore, t = τ(x) has the inverse function x = ψ(t) (0 < t < ) that monotonically decreases and \(\lim _{t\to \infty }\psi (t)= 0\).

It remains to verify (4.5). Expanding log(1 − x) in (A.1) gives

$$ \tau(x)=\frac{-\log(x/B)}{{\sum}_{k = 1}^{\infty}x^{k}/k}<\frac{-\log(x/B)}{x} \quad (0<x< B_{1}). $$
(A.2)

Substituting x = (log t)/t in (A.2), we have

$$\tau\left( \frac{\log t}{t}\right)< \frac{-t\log\{(\log t)/(tB)\}}{\log t} =t-t\frac{\log(\log t)-\log B}{\log t}. $$

So, for log tB, or teB, we have τ((log t)/t) < t. Recalling that x = ψ(t) is a monotonically decreasing function, we obtain

$$(\log t)/t=\psi\circ\tau((\log t)/t)>\psi(t)\quad(t\ge e^{B}). $$

This establishes the lemma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, T., Sugiura, H. & Hasegawa, T. Estimating convergence regions of Schröder’s iteration formula: how the Julia set shrinks to the Voronoi boundary. Numer Algor 82, 183–199 (2019). https://doi.org/10.1007/s11075-018-0598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0598-8

Keywords

Mathematics Subject Classification (2010)

Navigation