Skip to main content
Log in

A prediction–correction-based primal–dual hybrid gradient method for linearly constrained convex minimization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The primal–dual hybrid gradient (PDHG) method has been widely used for solving saddle point problems emerged in imaging processing. In particular, PDHG can be used to solve convex problems with linear constraints. Recently, it was shown that without further assumptions, the original PDHG may fail to converge. In this paper, we modify the original PDHG to obtain a convergent method. The method is in a prediction–correction fashion: the predictor is generated by PDHG and the correction is completed by two minor computations. The requirement of the step size parameters in our method is \(rs>\frac {1}{4}\|A^{T}A\|\), which differs from some existing PDHG variants that require rs > ∥ATA∥, and hence allows for larger step sizes. We prove the global convergence and establish the O(1/t) nonergodic convergence rate result for the method (t represents the iteration number). Numerical results show that our method with larger step sizes needs less iterations than existing efficient methods to achieve the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 127–239 (2014)

    Article  Google Scholar 

  2. Bonettini, S., Ruggiero, V.: On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration. J. Math. Imaging Vision 44, 236–253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, X.J., Han, D.R., Xu, L.L.: An improved first-order primal-dual algorithm with a new correction step. J. Glob. Optim. 57, 1419–1428 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chambolle, A., Pock, T.: A first-order primal-dual algorithms for convex problem with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primaldual algorithm. Math. Prog., Series A 159, 253–287 (2016)

    Article  MATH  Google Scholar 

  8. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numerica 25, 161–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, R.H., Ma, S.Q., Yang, J.F.: Inertial primal-dual algorithms for structured convex optimization. arXiv:1409.2992 (2014)

  10. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems. SIAM J. Optim. 24, 1779–1814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43, 129–159 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Esser, E., Zhang, X.Q., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3, 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldstein, T., Li, M., Yuan, X.: Adaptive Primal-Dual Splitting Methods for Statistical Learning and Image Processing. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2089–2097. Curran Associates, Inc. http://papers.nips.cc/paper/5723-adaptive-primal-dual-splitting-methods-for-statistical-learningand-image-processing.pdf (2015)

  14. He, B.S., Ma, F., Yuan, X.M.: An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. J. Math. Imaging Vis. 58, 279–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem: From contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, B.S., Yuan, X.M., Zhang, W.X.: A customized proximal point algorithm for convex minimization with linear constraints. Comput. Optim Appl. 56, 559–572 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, B.S., You, Y.F., Yuan, X.M.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imaging Sci. 7, 2526–2537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, H.J., Desai, J., Wang, K.: A primal-dual prediction-correction algorithm for saddle point optimization. J. Glob. Optim. 66, 573–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appli. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martinet, B.: Regularision d’inéquations variationnelles par approximations successive. Revue Francaise d’Automatique et Informatique Recherche Opérationnelle 126, 154–159 (1970)

    Article  MATH  Google Scholar 

  21. Ma, F., Ni, M.F.: A class of customized proximal point algorithms for linearly constrained convex optimization. Comput. Appl. Math. 37, 896–911 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma, S.Q., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Prog. Ser. A. 128, 321–353 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Powell, M.J.D.: A Method for Nonlinear Constraints in Minimization Problems. In: Fletcher, R. (ed.) Optimization, pp 283–298. Academic Press, New York (1969)

  25. Rockafellar, R.T.: Monotone operators and the proximal point algorithm,. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Starck, J.L., Murtagh, F., Fadili, J.M.: Sparse image and signal processing, wavelets, curvelets, morphological diversity. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  27. Yang, J.F., Yuan, X.M.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math. Comp. 82, 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, X.Q., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46, 20–46 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, M., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration, CAM Report 08-34, UCLA USA (2008)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for providing insightful comments and constructive suggestions, which helped us significantly improve the presentation of the manuscript.

Funding

The work is supported in part by the NSFC grant 11701564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Bi, Y. & Gao, B. A prediction–correction-based primal–dual hybrid gradient method for linearly constrained convex minimization. Numer Algor 82, 641–662 (2019). https://doi.org/10.1007/s11075-018-0618-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0618-8

Keywords

Navigation