Skip to main content
Log in

Approximating roots of nonlinear systems by α-dense curves

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We extend an algorithm due to Khamisov (Math. Notes 98(3/4), 484–491, 2015) to approximate, if any exists, a root of a single variable function. For this goal, using the so called α-dense curves, we transform a system of equations of several variables into a single variable equation. The feasibility and limitations of the proposed method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaffy, J., Galánti, A.: An always convergent algorithm for global minimization of univariate Lipschitz functions. Acta Polytechnica Hungarica 10(3), 21–39 (2013)

    Google Scholar 

  2. Butz, A.R.: Convergence with Hilbert’s space filling curve. J. Comput. System Sci. 3(2), 128–146 (1969)

    Article  MathSciNet  Google Scholar 

  3. Butz, A.R.: Solution of nonlinear equations with space filling curves. J. Math. Anal. Appl. 37(2), 351–383 (1972)

    Article  MathSciNet  Google Scholar 

  4. Cherruault, Y., Mora, G.: Optimisation Globale. Théorie Des Courbes α-Denses. Económica, Paris (2005)

    Google Scholar 

  5. Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. Galántai, A.: Always convergent methods for solving nonlinear equations. J. Comput. Appl. Mech. 10(2), 183–208 (2015)

    MATH  Google Scholar 

  7. Galántai, A.: Always convergent methods for nonlinear equations of several variables. Numer. Algorithms, August, pp. 1–17 (2017)

  8. García, G.: Interpolation of bounded sequences by α-dense curves. Journal of Interpolation and Approximation in Scientific Computing 2017 (1), 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  9. García, G., Mora, G., Redwitz, D.A.: Box-counting dimension computed by α-dense curves. Fractals 25(5), 11 pages (2017)

    Article  MathSciNet  Google Scholar 

  10. Hlawka, E.: Über eine klasse von Näherungspolygonen zur peanokurve. J. Number Theory 43(1), 93–108 (1993)

    Article  MathSciNet  Google Scholar 

  11. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    Book  Google Scholar 

  12. Hsu, C.S., Zhu, W.H.: A simplicial mappings method for locating the zeros of a function. Quart Appl. Math. 42, 41–59 (1984)

    Article  MathSciNet  Google Scholar 

  13. Khamisov, O.V.: Finding roots of nonlinear equations using the method of concave support functions. Math. Notes 98(3/4), 484–491 (2015)

    Article  MathSciNet  Google Scholar 

  14. Mora, G: The peano curves as limit of α-dense curves. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9(1), 23–28 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Mora, G., Cherruault, Y.: Characterization and generation of α-dense curves. Comput. Math. Appl. 33(9), 83–91 (1997)

    Article  MathSciNet  Google Scholar 

  16. Mora, G., Mira, J.A.: Alpha-dense curves in infinite dimensional spaces. Inter. J. of Pure and App. Mathematics 5(4), 257–266 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Mora, G., Redtwitz, D.A.: Densifiable metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(1), 71–83 (2011)

    Article  MathSciNet  Google Scholar 

  18. Sacco, W.F., Henderson, N.: Finding all solutions of nonlinear systems using a hybrid metaheuristic with fuzzy clustering means. Appl. Soft Comput. 11(8), 5424–5432 (2011)

    Article  Google Scholar 

  19. Sagan, H.: Space-Filling Curves. Springer, New York (1994)

    Book  Google Scholar 

  20. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves, springer briefs in optimization (2013)

    Book  Google Scholar 

  21. Smiley, M.W., Chun, C.: An algorithm for finding all solutions of a nonlinear system. J. Comput. Appl. Math. 137(2), 293–315 (2001)

    Article  MathSciNet  Google Scholar 

  22. Yamamura, Y., Fujioka, T.: Finding all solutions of nonlinear equations using the dual simplex method. J. Comput. Appl. Math. 152(1–2), 587–595 (2003)

    Article  MathSciNet  Google Scholar 

  23. Ziadi, R., Bencherif-Madani, A., Ellaia, A.: Continuous global optimization through the generation of parametric curves. Appl. Math. Comput. 282(5), 65–83 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Zufiria, P.J., Guttalu, R.: On an application of dynamical systems theory to determine all the zeros of a vector function. J. Math. Anal. Appl. 152(1), 269–295 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to my good friend Marga. Also, the author is grateful to the anonymous referees for their suggestions and corrections to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, G. Approximating roots of nonlinear systems by α-dense curves. Numer Algor 82, 749–760 (2019). https://doi.org/10.1007/s11075-018-0625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0625-9

Keywords

Mathematics Subject Classification (2010)

Navigation