Skip to main content
Log in

A Picard-type iterative algorithm for general variational inequalities and nonexpansive mappings

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a normal S-iterative algorithm is studied and analyzed for solving a general class of variational inequalities involving a set of fixed points of nonexpansive mappings and two nonlinear operators. It is shown that the proposed algorithm converges strongly under mild conditions. The rate of convergence of the proposed iterative algorithm is also studied. An equivalence of convergence between the normal S-iterative algorithm and Algorithm 2.6 of Noor (J. Math. Anal. Appl. 331, 810–822, 2007) is established and a comparison between the two is also discussed. As an application, a modified algorithm is employed to solve convex minimization problems. Numerical examples are given to validate the theoretical findings. The results obtained herein improve and complement the corresponding results in Noor (J. Math. Anal. Appl. 331, 810–822, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stampacchia, G.: Formes bilinearies coercivities sur les ensembles convexes. CR. Acad. Sci. Paris. 258, 4413–4416 (1964)

    MATH  Google Scholar 

  2. Patriksson, M.: Nonlinear Programming and Variational Inequality Problems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  3. Dafermos, S.C., McKelvey, S.C.: Partitionable variational inequalities with applications to network and economic equilibria. J. Optim. Theory. Appl. 73, 243–268 (1992)

    Article  MathSciNet  Google Scholar 

  4. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, vol. 38. Kluwer Academic Publishers, Dordrecht (2008)

  5. Ansari, Q.H., Köbis, E, Yao, J.C.: Vector variational inequalities and vector optimization: Theory and applications. Springer, Berlin (2018)

    Book  Google Scholar 

  6. Oden, J.T., Kikuchi, N.: Recent advances: Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Eng. Sci. 18, 1173–1284 (1980)

    Article  Google Scholar 

  7. Kikuchi, N, Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, vol. 8 of SIAM Studies in Applied Mathematics (1988)

  8. Rodrigues, J.F.: Obstacle Problems in Mathematical Physics, vol. 134. Elsevier (1987)

  9. Hlaváček, I, Haslinger, J., Nečas, J, Lovíšek, J: Solution of Variational Inequalities in Mechanics Applied Mathematical Sciences. Springer, New York (1988)

    Book  Google Scholar 

  10. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  Google Scholar 

  11. Deepho, J., Thounthong, P., Kumam, P., Phiangsungnoen, S.: A new general iterative scheme for split variational inclusion and fixed point problems of k-strict pseudo-contraction mappings with convergence analysis. J. Comput. Appl. Math. 318, 293–306 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gibali, A., Reich, S., Zalas, R.: Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 66, 417–437 (2017)

    Article  MathSciNet  Google Scholar 

  13. Noor, M.A.: General variational inequalities. Appl. Math. Lett. 1, 119–122 (1988)

    Article  MathSciNet  Google Scholar 

  14. Kinderlehrar, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  16. Noor, M.A.: General variational inequalities and nonexpansive mappings. J. Math. Anal. Appl. 331, 810–822 (2007)

    Article  MathSciNet  Google Scholar 

  17. Knopp, K.: Infinite Sequences and Series. Dover Publications Inc., New York (1956)

    MATH  Google Scholar 

  18. Berinde, V., Berinde, M.: The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudocontractive mappings. Carpathian. J. Math. 21, 13–20 (2005)

    MathSciNet  Google Scholar 

  19. Khan, A.R., Gürsoy, F, Karakaya, V.: Jungck-Khan iterative scheme and higher convergence rate. Int. J. Comput. Math. 93, 2092–2105 (2016)

    Article  MathSciNet  Google Scholar 

  20. Suparatulatorn, R., Cholamjiak, W., Suantai, S.: A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms. 77, 479–490 (2018)

    Article  MathSciNet  Google Scholar 

  21. Reich, S.: On Aitken’s Δ2 −method. Amer. Math. Monthly. 77, 283–284 (1970)

    MathSciNet  MATH  Google Scholar 

  22. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equation in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  23. Dawson, D.F.: Some rate invariant sequence transformations. Proc. Amer. Math. Soc. 15, 710–714 (1964)

    Article  MathSciNet  Google Scholar 

  24. Berinde, V.: On a notion of rapidity of convergence used in the study of fixed point iterative methods. Creat. Math. Inform. 25, 29–40 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Mann, W.R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  26. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer Science-Business Media (2009)

  27. Sahu, D.R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems. Fixed. Point. Theory. 12, 187–204 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Verma, M., Shukla, K.K.: A new accelerated proximal technique for regression with high-dimensional datasets. Knowl. Inf. Syst. 53, 423–438 (2017)

    Article  Google Scholar 

  29. Verma, M., Shukla, K.K.: A new accelerated proximal gradient technique for regularized multitask learning framework. Pattern. Recogn. Lett. 95, 98–103 (2017)

    Article  Google Scholar 

  30. Gürsoy, F, Khan, A.R., Ertürk, M, Karakaya, V.: Convergence and data dependency of normal-S iterative method for discontinuous operators on Banach space. Numer. Funct. Anal. Optim. 39, 322–345 (2018)

    Article  MathSciNet  Google Scholar 

  31. Gürsoy, F, Sahu, D.R., Ansari, Q.H.: S-iteration Process for variational inclusions and its rate of convergence. J. Nonlinear. Convex. Anal. 17, 1753–1767 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Sahu, D.R., Yao, J.C., Singh, V.K., Kumar, V.: Semilocal convergence analysis of S-iteration process of Newton–Kantorovich like in Banach spaces. J. Optim. Theory. Appl. 172, 102–127 (2017)

    Article  MathSciNet  Google Scholar 

  33. Berinde, V.: On a family of first order difference inequalities used in the iterative approximation of fixed points. Creat. Math. Inform. 18, 110–122 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Weng, X.: Fixed point iteration for local strictly pseudocontractive mapping. Proc. Amer. Math. Soc. 113, 727–731 (1991)

    Article  MathSciNet  Google Scholar 

  35. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory. Appl. 118, 417–428 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the reviewers for their useful comments and suggestions to improve quality and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müzeyyen Ertürk.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürsoy, F., Ertürk, M. & Abbas, M. A Picard-type iterative algorithm for general variational inequalities and nonexpansive mappings. Numer Algor 83, 867–883 (2020). https://doi.org/10.1007/s11075-019-00706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00706-w

Keywords

Mathematics Subject Classification (2010)

Navigation