Skip to main content
Log in

Numerical solution of Itô-Volterra integral equation by least squares method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a computational method based on least squares method and block pulse functions for solving Itô-Volterra integral equation. The Itô-Volterra integral equation is converted to a linear system of algebraic equations by the least squares method on the block pulse functions. The error analysis of the proposed method is investigated by providing theorems. Numerical examples show the accuracy and reliability of the presented method. The numerical results confirm that the presented method is more accurate than the block pulse functions operational matrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Choe, G.H.: Stochastic Analysis for Finance with Simulations. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Cioica, P.A., Dahlke, S.: Patial besov regularity for semilinear stochastic partial differential equations on bounded lipschitz domains. S, Acta Math. Int. J Comput. Math. 18(89), 2443–2459 (2012)

    Article  Google Scholar 

  5. Cortes, J.C., Jodar, L., Villafuerte, L.: Mean square numerical solution of random differential equations: facts and possibilities. Comput. Math. Appl. 53, 1098–1106 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cortes, J.C., Jodar, L., Villafuerte, L.: Numerical solution of random differential equations: a mean square approach. Math. Comput. Model. 45, 757–765 (2007)

    Article  MathSciNet  Google Scholar 

  7. Ehler, M.: Shrinkage rules for variational minimization problems and applications to analytical ultracentrifugation. J. Inverse Ill-Posed Probl. 19(4-5), 593–614 (2011)

    Article  MathSciNet  Google Scholar 

  8. Elworthy, K.D., Truman, A., Zhao, H.Z., Gaines, J.G.: Approximate traveling waves for generalized kpp equations and classical mechanics. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 446

  9. Ernst, P.A., Soleymani, F.: A legendre-based computational method for solving a class of itô, stochastic delay differential equations. Numer Algor. 80, 1267–1282 (2019)

    Article  Google Scholar 

  10. Heydari, M.H., Hooshmandasl, M.R., Cattani, C., Ghaini, F.M.M.: An efficient computational method for solving nonlinear stochastic itô integral equations Application for stochastic problems in physics. J. Comput. Phys. 283, 148–168 (2015)

    Article  MathSciNet  Google Scholar 

  11. Heydari, M.H., Hooshmandasl, M.R., Maalek, F.M., Cattani, C.: A computational method for solving stochastic itô,–volterra integral equations based on stochastic operational matrix for generalized hat basis functions. J Comput. Phys. 270, 402–415 (2014)

    Article  MathSciNet  Google Scholar 

  12. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  Google Scholar 

  13. Jankovic, S., Ilic, D.: One linear analytic approximation for stochastic integro-differential equations. Acta Math. Sci. 30, 1073–1085 (2010)

    Article  MathSciNet  Google Scholar 

  14. Jiang, Z.H., Schaufelberger, W.: Block Pulse Functions and Their Applications in Control Systems. Springer, Berlin (1992)

    Book  Google Scholar 

  15. Klebaner, F.C.: Introduction to Stochastic Calculus with Applications. Imperial College Press (1998)

  16. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations Applications of Mathematics. Springer, Berlin (1999)

    MATH  Google Scholar 

  17. Maleknejad, K., Khodabin, M., Rostami, M.: Numerical solution of stochastic volterra integral equations by a stochastic operational matrix based on block pulse functions. Math Comput. Model. 55, 791–800 (2012)

    Article  MathSciNet  Google Scholar 

  18. Miller, R.K.: On a system of integro-differential equations occuring in reactor dynamic. Math. Comp. 14, 446–452 (1996)

    Google Scholar 

  19. Mirzaee, F., Samadyar, N.: Application of hat basis functions for solving two-dimensional stochastic fractional integral equations. Comput. Appl Math. 37, 4899–4916 (2018)

    Article  MathSciNet  Google Scholar 

  20. Mirzaee, F., Samadyar, N.: On the numerical solution of stochastic quadratic integral equations via operational matrix method. Math. Meth. Appl. Sci. 41, 4465–4479 (2018)

    Article  MathSciNet  Google Scholar 

  21. Mohammadi, F.: A wavelet-based computational method for solving stochastic itô-volterra integral equations. J. Comput. Phys. 289, 254–265 (2015)

    Article  Google Scholar 

  22. Mohammadi, F.: Second kind chebyshev wavelet galerkin method for stochastic itô-volterra integral equations. Mediterr. J. Math. 13, 2613–2631 (2016)

    Article  MathSciNet  Google Scholar 

  23. Mohammadi, F.: Numerical treatment of nonlinear stochastic itô–volterra integral equations by piecewise spectral-collocation method. J. Comput. Nonlinear Dyn. 14(3), 031007 (2019)

    Article  MathSciNet  Google Scholar 

  24. Murge, M.G., Pachpatte, B.G.: Successiveapproximations for solutions of second order stochastic integro-differential equations of ito type. Indian J Pure Appl. Math. 21(3), 260–274 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Oksendal, B.: Stochastic differential equations: an introduction with applications. Springer, Berlin (1998)

    Book  Google Scholar 

  26. Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Berlin (2010)

    Book  Google Scholar 

  27. Rivlin, T.J.: An Introduction to the Approximation of Functions. Dover Publications, New York (1981)

    MATH  Google Scholar 

  28. Saffarzadeh, M., Loghmani, G.B., Heydari, M.: An iterative technique for the numerical solution of nonlinear stochastic itô, –volterra integral equations. J. Comput. Appl Math. 333, 74–86 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Mokhtar Abbasi and anonymous referees for their valuable comments and suggestions, which helped us to considerably improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ahmadinia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadinia, M., A., H.A. & Heydari, M. Numerical solution of Itô-Volterra integral equation by least squares method. Numer Algor 84, 591–602 (2020). https://doi.org/10.1007/s11075-019-00770-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00770-2

Keywords

Mathematics Subject Classification (2010)

Navigation