Skip to main content
Log in

A second-order fast compact scheme with unequal time-steps for subdiffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In consideration of the initial singularity of the solution, a temporally second-order fast compact difference scheme with unequal time-steps is presented and analyzed for simulating the subdiffusion problems in several spatial dimensions. On the basis of sum-of-exponentials technique, a fast Alikhanov formula is derived on general nonuniform meshes to approximate the Caputo’s time derivative. Meanwhile, the spatial derivatives are approximated by the fourth-order compact difference operator, which can be implemented by a fast discrete sine transform via the FFT algorithm. So the proposed algorithm is computationally efficient with the computational cost about \(O(MN\log M\log N)\) and the storage requirement \(O(M\log N)\), where M and N are the total numbers of grids in space and time, respectively. With the aids of discrete fractional Grönwall inequality and global consistency analysis, the unconditional stability and sharp H1-norm error estimate reflecting the regularity of solution are established rigorously by the discrete energy approach. Three numerical experiments are included to confirm the sharpness of our analysis and the effectiveness of our fast algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  2. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  Google Scholar 

  3. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  Google Scholar 

  4. Li, C.P., Chen, A., Ye, J.J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)

    Article  MathSciNet  Google Scholar 

  5. Gao, G.H., Sun, Z.Z., Zhang, H.W.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  6. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lv, C.W., Xu, C.J.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2699–A2724 (2016)

    Article  MathSciNet  Google Scholar 

  8. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D frational subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  Google Scholar 

  9. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)

    Article  MathSciNet  Google Scholar 

  10. Jin, B.T., Lazarov, R., Zhou, Z.: An analysis of the l1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Sakamoto, K., Yamamoto, M.: Initial value/boundary value prolems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  12. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  13. Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equation. Comput. Phys. Commun. 183, 2594–2600 (2012)

    Article  MathSciNet  Google Scholar 

  14. Mustapha, K., Aimutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algo. 61, 525–543 (2012)

    Article  MathSciNet  Google Scholar 

  15. Zhang, Y.N., Sun, Z.Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on nonuniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  Google Scholar 

  16. Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Appl. Math. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Liao, H.-L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equation. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liao, H.-L., McLean, W., Zhang, J.W.: A discrete grönwall inequality with application to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  19. Liao, H.-L., McLean, W., Zhang, J.W.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. arXiv:1803.09873v2 (2018)

  20. Ren, J.C., Liao, H.-L., Zhang, J.W., Zhang, Z.M.: Sharp h1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. arXiv:1811.08059v1 (2018)

  21. Ke, R.H., Ng, M.K., Sun, H.W.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equation. J. Comput. Phys. 303, 203–211 (2015)

    Article  MathSciNet  Google Scholar 

  22. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  Google Scholar 

  23. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  24. Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  25. Shen, J.Y., Sun, Z.Z., Du, R.: Fast finite difference schemes for time-fractional diffusion equations with a weak singularity at initial time. East Asia J. Appl. Math. 8, 834–858 (2018)

    Article  MathSciNet  Google Scholar 

  26. Liao, H.-L., Yan, Y.G., Zhang, J.W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  27. Wang, H.Q., Zhang, Y., Ma, X., Qiu, J., Liang, Y.: An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions. Commun. Math. Appl. 71, 1843–1860 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, H.Q., Ma, X., Lu, J.L., Cao, W.: An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation. Appl. Math. Comput. 297, 131–144 (2017)

    MathSciNet  MATH  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Additional information

Fundding information

Xin Li is financially supported by a grant KJ2018A0523 from the University Natural Science Research Key Project of Anhui Province. Hong-lin Liao is financially supported by a grant 1008-56SYAH18037 from NUAA Scientific Research Starting Fund of Introduced Talent and a grant DRA2015518 from 333 High-level Personal Training Project of Jiangsu Province.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liao, Hl. & Zhang, L. A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer Algor 86, 1011–1039 (2021). https://doi.org/10.1007/s11075-020-00920-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00920-x

Keywords

Navigation