Skip to main content
Log in

A first-order inexact primal-dual algorithm for a class of convex-concave saddle point problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we study a first-order inexact primal-dual algorithm (I-PDA) for solving a class of convex-concave saddle point problems. The I-PDA, which involves a relative error criterion and generalizes the classical PDA, has the advantage of solving one subproblem inexactly when it does not have a closed-form solution. We show that the whole sequence generated by I-PDA converges to a saddle point solution with \(\mathcal {O}(1/N)\) ergodic convergence rate, where N is the iteration number. In addition, under a mild calmness condition, we establish the global Q-linear convergence rate of the distance between the iterates generated by I-PDA and the solution set, and the R-linear convergence speed of the nonergodic iterates. Furthermore, we demonstrate that many problems arising from practical applications satisfy this calmness condition. Finally, some numerical experiments are performed to show the superiority and linear convergence behaviors of I-PDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arrow, K.J., Hurwicz, L., Uzawa, H.: With Contributions by H.B. chenery, S.M. Johnson, S. Karlin, T. Marschak, and R.M. Solow. Studies in Linear and Non-Linear Programming, volume II of Stanford Mathematical Studies in the Social Science. Stanford Unversity Press, Stanford (1958)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cai, X.J., Han, D.R., Xu, L.L.: An improved first-order primal-dual algorithm with a new correction step. J. Glob. Optim. 57(4), 1419–1428 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm. Math. Program. 159(1-2), 253–287 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chambolle, A., Ehrhardt, M.J., Richtárik, P., Schonlieb, C.B.: Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM J. Optim. 28(4), 2783–2808 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for minimization of the sum of three convex separable functions. Fixed Point Theory A 2016(1), 54 (2016)

    Article  MathSciNet  Google Scholar 

  9. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

    Article  MathSciNet  Google Scholar 

  10. Davis, D., Yin, W.T.: A three-operator splitting scheme and its optimization applications. Set.-valued Var. Anal. 25(4), 829–858 (2017)

    Article  MathSciNet  Google Scholar 

  11. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer Monographs in Mathematics, p 208. Springer, Berlin (2009)

    Book  Google Scholar 

  12. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the 1-ball for learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, pp 272–279. ACM (2008)

  13. Eckstein, J., Yao, W.: Approximate ADMM algorithms derived from Lagrangian splitting. Comput. Optim. Appl. 68(2), 363–405 (2017)

    Article  MathSciNet  Google Scholar 

  14. Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Math. Program. 170(2), 417–444 (2018)

    Article  MathSciNet  Google Scholar 

  15. Esser, E., Zhang, X.Q., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imag. Sci. 3(4), 1015–1046 (2010)

    Article  MathSciNet  Google Scholar 

  16. Han, D.R., He, H.J., Yang, H., Yuan, X.M.: A customized Douglas-Rachford splitting algorithm for separable convex minimization with linear constraints. Numer. Math. 127(1), 167–200 (2014)

    Article  MathSciNet  Google Scholar 

  17. Han, D.R., Sun, D.F., Zhang, L.W.: Linear rate convergence of the alternating direction method of multipliers for convex composite programming. Math. Oper. Res. 43(2), 622–637 (2017)

    Article  MathSciNet  Google Scholar 

  18. He, B.S., Yuan, X.M.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

    Article  MathSciNet  Google Scholar 

  19. He, B.S., Ma, F., Yuan, X.M.: An algorithmic framework of generalized primal-dual hybrid gradient methods for saddle point problems. J. Math. Imag. Vis. 58(2), 279–293 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jiang, F., Cai, X.J., Wu, Z.M., Han D.R.: Approximate rst-order primal-dual algorithms for saddle point problems. Math. Comput. (2021). https://doi.org/10.1090/mcom/3610

  21. Malitsky, Y., Pock, T.: A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–432 (2018)

    Article  MathSciNet  Google Scholar 

  22. Möllenhoff, T., Strekalovskiy, E., Moeller, M., Daniel, C.: The primal-dual hybrid gradient method for semiconvex splittings. SIAM J. Imag. Sci. 8(2), 827–857 (2015)

    Article  MathSciNet  Google Scholar 

  23. Morini, S., Porcelli, M., Chan, R.H.: A reduced Newton method for constrained linear least squares problems. J. Comput. Appl. Math. 233 (9), 2200–2212 (2010)

    Article  MathSciNet  Google Scholar 

  24. Nam, A.S., Davies, M.E., Elad, M., Gribonval, R.: The cosparse analysis model and algorithms. Appl. Comput. Harmon. Anal. 34(1), 30–56 (2013)

    Article  MathSciNet  Google Scholar 

  25. Parikh, N., Boyd, S.: Proximal algorithms. Found Trends®Optim. 1(3), 127–239 (2014)

  26. Pedregosa, F., Gidel, G.: Adaptive three operator splitting. arXiv:1804.02339 (2018)

  27. Rasch, J., Chambolle, A.: Inexact first-order primal-dual algorithms. Comput. Optim. Appl. 76, 381–430 (2020). https://doi.org/10.1007/s10589-020-00186-y

    Article  MathSciNet  Google Scholar 

  28. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 227–238 (1992)

    Article  MathSciNet  Google Scholar 

  29. Robinson, S.M.: An implicit-function theorem for generalized variational inequalities. Technical Summary Report 1672, Mathematics Research Center University of Wisconsin-Madison; available from National Technical Information Service under Accession ADA031952 (1976)

  30. Robinson, S.M.: Some Continuity Properties of Polyhedral Multifunctions. Mathematical Programming at Oberwolfach, pp 206–214. Springer, Berlin (1981)

    Book  Google Scholar 

  31. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  32. Rockafellar, R.T.: Convex analysis. Princeton University Press, Princeton (2015)

    Google Scholar 

  33. Sun, T., Barrio, R., Cheng, L., Jiang, H.: Precompact convergence of the nonconvex primal-dual hybrid gradient algorithm. J. Comput. Appl. Math. 330, 15–27 (2018)

    Article  MathSciNet  Google Scholar 

  34. Xie, J.X.: On inexact ADMMs with relative error criteria. Comput. Optim. Appl. 71(3), 743–765 (2018)

    Article  MathSciNet  Google Scholar 

  35. Yan, M.: A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. J. Sci. Comput. 76(3), 1698–1717 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhao, T., Eldar, Y.C., Beck, A., Nehorai, A.: Smoothing and decomposition for analysis sparse recovery. IEEE Trans. Signal Process. 62(7), 1762–1774 (2014)

    Article  MathSciNet  Google Scholar 

  37. Zhu, M.Q., Chan, T.F.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report (2008)

Download references

Funding

This research was partially supported by the National Natural Science Foundation of China under grants 11571178, 11871279 and 12001286, by the China Scholarship Council, by the Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX20_1163, and by the USA National Science Foundation under grant 1819161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchao Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, F., Wu, Z., Cai, X. et al. A first-order inexact primal-dual algorithm for a class of convex-concave saddle point problems. Numer Algor 88, 1109–1136 (2021). https://doi.org/10.1007/s11075-021-01069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01069-x

Keywords

Mathematics subject classification (2010)

Navigation