Skip to main content

Advertisement

Log in

Hybrid algorithms with active set prediction for solving linear inequalities in a least squares sense

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Inspired by the hybrid algorithm proposed by Dax (Numer. Algor. 50, 97–114, 2009), we attempt to establish three kinds of strategies for solving the linear inequalities in a least squares sense. It can avoid inefficient iterations by active set prediction. Three different formulas are designed in terms of the identification property. A distinctive feature of our switching strategies is the adaptive estimates of the optimal active set. Extensive numerical experiments show the efficiency of hybrid algorithms, especially for the inconsistent system of linear inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bennett, K. P., Mangasarian, O. L.: Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw. 1, 23–34 (1992)

    Article  Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge university press, United Kingdom (2004)

    Book  Google Scholar 

  3. Bramley, R., Winnicka, B.: Solving linear inequalities in a least squares sense. SIAM J. Sci. Comput. 17, 275–286 (1996)

    Article  MathSciNet  Google Scholar 

  4. Burke, J. V., Moré, J. J.: On the identification of active constraints. SIAM J. Numer. Anal. 25, 1197–1211 (1988)

    Article  MathSciNet  Google Scholar 

  5. Burke, J. V., Moré, J. J.: Exposing constraints. SIAM J. Optim. 4, 573–595 (1994)

    Article  MathSciNet  Google Scholar 

  6. Calamai, P. H., Moré, J. J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Altschuler, M. D., Powlis, W. D.: A computational solution of the inverse problem in radiation-therapy treatment planning. Appl. Math. Comput. 25, 57–88 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Ben-Israel, A., Xiao, Y., Galvin, J. M.: On linear infeasibility arising in intensity-modulated radiation therapy inverse planning. Linear Algebra Appl. 428, 1406–1420 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, United Kingdom (2000)

    Book  Google Scholar 

  10. Dax, A.: On computational aspects of bounded linear least squares problems. ACM T. Math. Softw.. 17, 64–73 (1991)

    Article  MathSciNet  Google Scholar 

  11. Dax, A.: A hybrid algorithm for solving linear inequalities in a least squares sense. Numer. Algor. 50, 97–114 (2009)

    Article  MathSciNet  Google Scholar 

  12. Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, J. J., Sandhu, S., Guppy, K. H., Lee, S., Froelicher, V.: International application of a new probability algorithm for the diagnosis of coronary artery disease. Amer. J. Cardiol. 64, 304–310 (1989)

    Article  Google Scholar 

  13. Goberna, M. A., Hiriart Urruty, J. B., López, M. A.: Best approximate solutions of inconsistent linear inequality system. Vietnam J. Math. 46, 271–284 (2018)

    Article  MathSciNet  Google Scholar 

  14. Han, S. P.: Least Squares-Solution of Linear Inequalities. Technical Report 2141, Math. Res. Center, University of Wisconsin-Madison (1980)

  15. Ketabchi, S., Salahi, M.: Correcting inconsistency in linear inequalities by minimal change in the right hand side vector. Sci. J. Moldova. 17, 179–192 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Lei, Y.: The inexact fixed matrix iteration for solving large linear inequalities in a least squares sense. Numer. Algor. 69, 227–251 (2015)

    Article  MathSciNet  Google Scholar 

  17. Li, W., Swetits, J.: A new algorithm for solving strictly convex quadratic programs. SIAM J. Optim. 7, 595–619 (1997)

    Article  MathSciNet  Google Scholar 

  18. Madsen, K., Nielsen, H. B., Pinar, M. C.: A finite continuation algorithm for bound constrained quadratic programming. SIAM J. Optim. 9, 62–83 (1999)

    Article  MathSciNet  Google Scholar 

  19. Madsen, K., Nielsen, H. B., Pinar, M. C.: Bound constrained quadratic programming via piecewise quadratic functions. Math. Prog. 85, 135–156 (1999)

    Article  MathSciNet  Google Scholar 

  20. Moré, J. J., Sorensen, D. C.: Computing a trust region step. SIAM. J. Sci. Stat. Comput. 4, 553–572 (1983)

    Article  Google Scholar 

  21. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2004)

    MATH  Google Scholar 

  22. Pinar, M. C.: Newton’s method for linear inequality systems. Eur. J. Oper. Res. 107, 710–719 (1998)

    Article  Google Scholar 

  23. Popa, C., Ṡerban, C.: Han-type algorithms for inconsistent systems of linear inequalities-A unified approach. Appl. Math. Comput. 246, 247–256 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Robinson, D. P., Feng, L., Nocedal, J. M., Pang, J. S.: Subspace accelerated matrix splitting algorithms for asymmetric and symmetric linear complementarity problems. SIAM J. Optim. 23, 1371–1397 (2013)

    Article  MathSciNet  Google Scholar 

  25. Smith, F. M.: Pattern classifier design by linear programming. IEEE Trans. Comput. 17, 367–372 (1968)

    Article  Google Scholar 

  26. Vapnik, V., Kotz, S.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees for the detailed comments and valuable suggestions, which have improved the presentation of the paper.

Funding

This work is supported by the National Science Foundation of China (No. 11871205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Lei.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by National Natural Science Foundations of China (No. 11871205).

Appendix:: Proofs of Corollaries 1–3

Appendix:: Proofs of Corollaries 1–3

1.1 1.1 Proof of Corollary 1

Proof

Let dk be the solution of (2.2) and by the assumption that A is full column rank, we have

$$ d_{k}=R^{-1}Q^{T}N_{k}r_{k}. $$

For the next iteration xk+ 1 = xk + dk, the corresponding residual vector is

$$ r_{k+1}=b-Ax_{k+1}=r_{k}-Ad_{k}=(I-QQ^{T}N_{k})r_{k}. $$
(49)

Theorem 2 implies the following fact for sufficiently large k that there exists a positive integer k0 such that

$$ N_{k_{0}}=N_{k}, \quad \forall \ k \geq k_{0}. $$

By simple recurrences, the result (36) holds for any positive integer ns. □

1.2 1.2 Proof of Corollary 2

Proof

For the actual reduction δLk defined in (38), it follows from the last equality in (19) that

$$ \begin{array}{@{}rcl@{}} \delta L_{k}&=&\Vert A(x_{k}-x_{k-1}) \Vert^{2} - (\Vert b_{\mathcal{I}_{k-1}}-A_{\mathcal{I}_{k-1}}x_{k}\Vert^{2} - \Vert (b_{\mathcal{I}_{k-1}}-A_{\mathcal{I}_{k-1}}x_{k})_{+}\Vert^{2} )\\ &\quad & - (\Vert A_{\overline{\mathcal{I}}_{k-1}}(x_{k}-x_{k-1})\Vert^{2}-\Vert (b_{\overline{\mathcal{I}}_{k-1}}-A_{\overline{\mathcal{I}}_{k-1}}x_{k})_{+}\Vert^{2}). \end{array} $$
(50)

Since \(\Vert b_{\mathcal {I}_{k-1}}-A_{\mathcal {I}_{k-1}}x_{k}\Vert ^{2} \geq \Vert (b_{\mathcal {I}_{k-1}}-A_{\mathcal {I}_{k-1}}x_{k})_{+}\Vert ^{2}\), the inequality (40) can be derived by (39) and (50).

For the sufficiently large k, the identification property of fixed matrix algorithm implies that there is a positive integer k0 such that

$$ \mathcal{I}(x_{k})=\mathcal{I}(x_{k-1}), \quad k\geq k_{0}, $$

which implies that

$$ \Vert b_{I_{k-1}}-A_{I_{k-1}}x_{k}\Vert^{2} = \Vert (b_{I_{k-1}}-A_{I_{k-1}}x_{k})_{+}\Vert^{2}, $$

and

$$ \Vert (b_{\overline{I}_{k-1}}-A_{\overline{I}_{k-1}}x_{k})_{+} \Vert^{2}=0 $$

holds for all positive integer kk0. Then, the equality (41) follows the definitions of δEk and δLk. □

1.3 1.3 Proof of Corollary 3

Proof

Since xk solves the least squares problem (18), then we have the normal equation

$$ A^{T}Ax_{k}=A^{T}(b+z_{k-1}). $$
(51)

The Moore-Penrose pseudo-inverse of A can be expressed as A+ = (ATA)− 1AT due to the fact that A is full column rank, then it follows from (51) that

$$ x_{k}-x_{k-1}=A^{+}(z_{k-1}-z_{k-2}). $$
(52)

Let \(\bar {N}_{k-1}=I-N_{k-1}\), where Nk− 1 is the sign matrix defined in Corollary 1. Consequently, \(\bar {N}_{k-1}\) is the sign matrix of the vector Axk− 1b and

$$ \bar{N}_{k-1}(Ax_{k-1}-b)=(Ax_{k-1}-b)_{+}=z_{k-1}. $$
(53)

Theorem 2 shows that \( \bar {N}_{k-1}=\bar {N}_{k-2}\) holds for sufficiently large k. Moreover, by combining (52) with (53), we get

$$ x_{k}-x_{k-1}=A^{+}\bar{N}_{k-1}A(x_{k-1}-x_{k-2}), $$
(54)

which yields

$$ \frac{\Vert x_{k}-x_{k-1} \Vert}{\Vert x_{k-1}-x_{k-2} \Vert} \leq \Vert A^{+}\bar{N}_{k-1}A \Vert, $$

where ∥⋅∥ denotes the spectrum norm of the matrix \(A^{+}\bar {N}_{k-1}A\). The result in (42) is a direct consequence of the observation that the maximal eigenvalue of the positive semidefinite matrix \(A^{+}\bar {N}_{k-1}A\) is just 1.

We assume that the sequence {xk} satisfies (54) after a sufficiently large k0. For simplicity, we denote \( B=A^{+}\bar {N}_{k-1}A \), and we have

$$ {\Delta}_{k}=x_{k}-x_{k-1}=B^{k-k_{0}}(x_{k_{0}}-x_{k_{0}-1})=B^{k-k_{0}}{\Delta}_{0}. $$

Since \(A^{+}\bar {N}_{k-1}A\) is symmetric matrix and can be diagonalizable, there exists an orthogonal matrix S such that B = STΛS, where Λ is a diagonal matrix consisting of the eigenvalues λ1,...,λn. By denoting SΔ0 = (ν1,⋯ ,νn)T, we have

$$ \Vert {\Delta}_{k} \Vert^{2} = \Vert S^{T} {\Lambda}^{k-k_{0}}S{\Delta}_{0} \Vert^{2}={\sum}_{i=1}^{n}(\nu_{i}\lambda_{i}^{k-k_{0}})^{2}. $$

Hence, we can obtain the ratio of contraction

$$ \frac{c_{k+1}}{c_{k}} = \frac{\Vert {\Delta}_{k+1}\Vert \Vert {\Delta}_{k-1}\Vert }{\Vert {\Delta}_{k}\Vert^{2}}. $$

By Cauchy-Schwarz inequality

$$ \left( \sum\limits_{i=1}^{n}(\nu_{i}\lambda_{i}^{k-k_{0}+1})^{2}\right)\left( \sum\limits_{i=1}^{n}(\nu_{i}\lambda_{i}^{k-k_{0}-1})^{2}\right) \geq \left( \sum\limits_{i=1}^{n}(\nu_{i}\lambda_{i}^{k-k_{0}})^{2}\right)^{2}, $$

we immediately get ck+ 1ck. Hence, the contraction ck keeps increasing until it approaches 1. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Lei, Y. Hybrid algorithms with active set prediction for solving linear inequalities in a least squares sense. Numer Algor 90, 1327–1356 (2022). https://doi.org/10.1007/s11075-021-01232-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01232-4

Keywords

Navigation