Skip to main content
Log in

An EMC-HDG scheme for the convection-diffusion equation with random diffusivity

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, we propose an ensemble Monte Carlo hybridizable discontinuous Galerkin (EMC-HDG) algorithm to simulate the convection-diffusion equation with random diffusion coefficients. The EMC-HDG algorithm reduces the computation cost compared with Monte Carlo HDG (MC-HDG) method. This algorithm is a semi-implicit scheme which shares a common coefficient matrix with multiple right-hand-vectors by introducing an ensemble average of coefficient functions. Moreover, for the numerical approximation, optimal convergence rate O(hk+ 1) in space and O(△t) in time are obtained. To confirm our theoretical results, several numerical experiments are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Česenek, J., Feistauer, M.: Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50(3), 1181–1206 (2012)

    Article  MathSciNet  Google Scholar 

  2. Charrier, J., Scheichl, R., Teckentrup, A. L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51(1), 322–352 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations, Part I: General nonconforming meshes. IMA J. Numer. Anal. 32(4), 1267–1293 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chen, Y., Cockburn, B.: Analysis of variable-degree HDG methods for convection-diffusion equations, Part II: Semimatching nonconforming meshes. Math. Comp. 83, 87–111 (2014)

    Article  MathSciNet  Google Scholar 

  5. Chen, G., Pi, L. Y., Xu, L. W., Zhang, Y. W.: A superconvergence ensemble HDG method for parameterized convection diffusion equations. SIAM J. Numer. Anal 57(6), 2551–2578 (2019)

    Article  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C. W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (6), 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Gopalakrishnan, J., Sayas, F. J.: A projection based error analysis of HDG methods. Math. Comp. 79(271), 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  9. Fiordilino, J. A.: A second order ensemble timestepping algorithm for natural convection. SIAM J. Numer. Anal. 56(2), 816–837 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fishman, G.S.: Monte Carlo: concepts, algorithms, and applications. Springer, New York (1996)

  11. Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESAIM Math. Model. Numer. Anal. 49(1), 225–256 (2015)

    Article  MathSciNet  Google Scholar 

  12. Giles, M. B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gunzburger, M. D., Webster, C. G., Zhang, G.: Stochastic finite element methods for partial differential equations with random input data. Acta Numer. 23, 521–650 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gunzburger, M. D., Jiang, N., Schneier, M.: A higher-order ensemble/proper orthogonal decomposition method for the nonstationary Navier-Stokes equations. Int. J. Numer. Anal. Model. 15(4), 608–627 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Gunzburger, M. D., Jiang, N., Wang, Z.: An efficient algorithm for simulating ensembles of parameterized flow problems. IMA J. Numer. Anal. 39(3), 1180–1125 (2019)

    Article  MathSciNet  Google Scholar 

  16. Jiang, N.: A second-order ensemble method based on a blended backward differentiation formula time-stepping scheme for time-dependent Navier-Stokes equations. Numer. Methods Partial Differ. Equ. 33(1), 34–61 (2017)

    Article  Google Scholar 

  17. Jiang, N., Tran, H.: Analysis of a stabilized CNLF method with fast slow wave splittings for flow problems. Comput. Methods Appl. Math. 15(3), 307–330 (2015)

    Article  MathSciNet  Google Scholar 

  18. Jiang, N., Layton, W.: An algorithm for fast calculation of flow ensembles. Int. J. Uncertain. Quantif. 4(4), 273–301 (2014)

    Article  MathSciNet  Google Scholar 

  19. Jiang, N., Layton, W.: Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion. Numer. Methods Partial Differ. Equ. 31(3), 630–651 (2015)

    Article  MathSciNet  Google Scholar 

  20. Li, N., Fiordilino, J., Feng, X.: Ensemble time-stepping algorithm for the convection-diffusion equation with random diffusivity. J. Sci. Comput. 79(2), 1271–1293 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lord, G. J., Powell, C. E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  22. Luo, Y., Wang, Z.: An ensemble algorithm for numerical solutions to deterministic and random parabolic PDEs. SIAM J. Numer. Anal. 56(2), 859–876 (2018)

    Article  MathSciNet  Google Scholar 

  23. Luo, Y., Wang, Z.: A multilevel Monte Carlo ensemble scheme for random parabolic PDEs. SIAM J. Sci. Comput. 41(1), 622–642 (2019)

    Article  MathSciNet  Google Scholar 

  24. Qiu, W., Shi, K.: An HDG method for convection diffusion equation. J. Sci. Comput. 66(1), 346–357 (2016)

    Article  MathSciNet  Google Scholar 

  25. Yu, Y., Chen, G., Pi, L. Y., Zhang, Y. W.: A new ensemble HDG method for parameterized convection diffusion PDEs. Numer. Math. Theory Methods Appl. 14(1), 144–175 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by NSF of China (No. 11961008), talent introduction fund of Guizhou University ([2013] No. 53).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbing Luo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Luo, X. An EMC-HDG scheme for the convection-diffusion equation with random diffusivity. Numer Algor 90, 1755–1776 (2022). https://doi.org/10.1007/s11075-021-01250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01250-2

Keywords

Mathematics Subject Classification (2010)

Navigation