Skip to main content
Log in

Chains of Modular Elements and Lattice Connectivity

  • Published:
Order Aims and scope Submit manuscript

Abstract

We show that the order complex of any finite lattice with a chain \(\widehat{0} < m_{1} < \cdots < m_{r} < \widehat{1}\) of modular elements is at least (r−2)-connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björner, A.: Shellable and Cohen-Macaulay partially ordered sets. Trans. Am. Math. Soc. 260(1), 159–183 (1980)

    Article  MATH  Google Scholar 

  2. Björner, A.: Subspace arrangements. First European Congress of Mathematics, vol. I (Paris, 1992) pp. 321–370. Progr. Math., 119, Birkhäuser, Basel (1994)

  3. Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 1, 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

    Google Scholar 

  4. Björner, A., Walker, J.: A homotopy complementation formula for partially ordered sets. Eur. J. Comb. 4(1), 11–19 (1983)

    MATH  Google Scholar 

  5. Gasharov, V., Peeva, I., Welker, V.: The lcm-lattice in monomial resolutions. Math. Res. Lett. 6(5–6), 521–532 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Goresky, M., MacPherson, R.: Stratified Morse theory Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Ban 14. Springer, Berlin Heidelberg New York (1988)

    Google Scholar 

  7. Herzog, J., Reiner, V., Welker, V.: The Koszul property in affine semigroup rings. Pac. J. Math. 186, 39–65 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hersh, P., Welker, V.: Gröbner basis degree bounds on \({\text{Tor}}^{{k{\left[ \Lambda \right]}}}_{ \bullet } {\left( {k,k} \right)}_{ \bullet }\) and discrete Morse theory for posets. Integer points in polyhedra – geometry, number theory, algebra, optimization, pp. 101–138, Contemp Math, vol. 374, Amer. Math. Soc, Providence, RI 2005.

    Google Scholar 

  9. Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer, Berlin Heidelberg New York (2005)

    Google Scholar 

  10. Peeva, I.: Resolutions and lattices. The Roos Festschrift, vol. 2. Homology, Homotopy, and Applications 4(2) part 2, 427–437 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Peeva, I., Reiner, V., Sturmfels, B.: How to shell a monoid. Math. Ann. 310, 379–393 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Schmidt, R.: Subgroup lattices of groups. de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994)

    Google Scholar 

  13. Stanley, R.: Supersolvable lattices. Algebra Univers. 2, 197–217 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ziegler, G., Zivaljevic, R.: Homotopy types of subspace arrangements via diagrams of spaces. Math. Ann. 295, 527–548 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Shareshian.

Additional information

The first author was supported during part of this work by a postdoctoral fellowship from the Mathematical Sciences Research Institute. The second author was supported by NSF grant DMS-0300483.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hersh, P., Shareshian, J. Chains of Modular Elements and Lattice Connectivity. Order 23, 339–342 (2006). https://doi.org/10.1007/s11083-006-9053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-006-9053-x

Key words

Navigation